
Agnieszka Gizak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2091801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	APR-246—The Mutant TP53 Reactivator—Increases the Effectiveness of Berberine and Modified Berberines to Inhibit the Proliferation of Pancreatic Cancer Cells. Biomolecules, 2022, 12, 276.	4.0	4
2	Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53. Cells, 2022, 11, 794.	4.1	6
3	Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging, 2022, 14, 3365-3386.	3.1	5
4	FBP2—A New Player in Regulation of Motility of Mitochondria and Stability of Microtubules in Cardiomyocytes. Cells, 2022, 11, 1710.	4.1	3
5	Sensitivity of pancreatic cancer cells to chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals can be regulated by WT-TP53. Advances in Biological Regulation, 2021, 79, 100780.	2.3	6
6	A novel remitting leukodystrophy associated with a variant in FBP2. Brain Communications, 2021, 3, fcab036.	3.3	2
7	GSK-3Î ² Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10, 816.	4.1	19
8	Absolute Proteome Analysis of Hippocampus, Cortex and Cerebellum in Aged and Young Mice Reveals Changes in Energy Metabolism. International Journal of Molecular Sciences, 2021, 22, 6188.	4.1	10
9	GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells, 2021, 10, 2092.	4.1	17
10	Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2020, 75, 100672.	2.3	9
11	Expression of Fbp2, a Newly Discovered Constituent of Memory Formation Mechanisms, Is Regulated by Astrocyte–Neuron Crosstalk. International Journal of Molecular Sciences, 2020, 21, 6903.	4.1	3
12	Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells, 2020, 9, 1110.	4.1	146
13	GSK-3 and miRs: Master regulators of therapeutic sensitivity of cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118770.	4.1	10
14	Fructose 1,6-Bisphosphatase 2 Plays a Crucial Role in the Induction and Maintenance of Long-Term Potentiation. Cells, 2020, 9, 1375.	4.1	8
15	GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells, 2020, 9, 727.	4.1	42
16	GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118696.	4.1	14
17	The Reverse Warburg Effect Is Associated with Fbp2-Dependent Hif1α Regulation in Cancer Cells Stimulated by Fibroblasts. Cells, 2020, 9, 205.	4.1	18
18	Cell-to-cell lactate shuttle operates in heart and is important in age-related heart failure. Aging, 2020, 12, 3388-3406.	3.1	18

Agnieszka Gizak

#	Article	IF	CITATIONS
19	Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death and Disease, 2019, 10, 712.	6.3	47
20	Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 73, 100633.	2.3	25
21	Fructose-1,6-bisphosphatase: From a glucose metabolism enzyme to multifaceted regulator of a cell fate. Advances in Biological Regulation, 2019, 72, 41-50.	2.3	20
22	Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Advances in Biological Regulation, 2019, 71, 172-182.	2.3	34
23	Metformin influences drug sensitivity in pancreatic cancer cells. Advances in Biological Regulation, 2018, 68, 13-30.	2.3	45
24	Agingâ€associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyteâ€toâ€neuron lactate shuttle. Glia, 2018, 66, 1481-1495.	4.9	51
25	Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells—Power of nutraceuticals. Advances in Biological Regulation, 2018, 67, 190-211.	2.3	23
26	Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opinion on Therapeutic Targets, 2018, 22, 833-848.	3.4	83
27	Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Advances in Biological Regulation, 2017, 65, 77-88.	2.3	39
28	Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Advances in Biological Regulation, 2017, 63, 32-48.	2.3	36
29	Dimeric and tetrameric forms of muscle fructose-1,6-bisphosphatase play different roles in the cell. Oncotarget, 2017, 8, 115420-115433.	1.8	14
30	Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging, 2017, 9, 1477-1536.	3.1	168
31	Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget, 2017, 8, 14221-14250.	1.8	86
32	Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?. Proteomes, 2016, 4, 2.	3.5	3
33	Effects of mutations in Wnt/Ĵ²-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2942-2976.	4.1	137
34	Proteomics Unveils Fibroblast–Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles. Journal of Proteome Research, 2016, 15, 2479-2490.	3.7	11
35	Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells. Advances in Biological Regulation, 2016, 60, 64-87.	2.3	35
36	Critical Roles of EGFR Family Members in Breast Cancer and Breast Cancer Stem Cells: Targets for Therapy. Current Pharmaceutical Design, 2016, 22, 2358-2388.	1.9	34

Agnieszka Gizak

#	Article	IF	CITATIONS
37	Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways. Journal of Proteome Research, 2015, 14, 3263-3273.	3.7	34
38	Astrocyteâ€neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes. Glia, 2015, 63, 328-340.	4.9	59
39	Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme - phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis. Oncotarget, 2015, 6, 17237-17250.	1.8	10
40	Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5, 4603-4650.	1.8	231
41	GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014, 5, 2881-2911.	1.8	407
42	Changes in quaternary structure of muscle fructose-1,6-bisphosphatase regulate affinity of the enzyme to mitochondria. International Journal of Biochemistry and Cell Biology, 2014, 48, 55-59.	2.8	19
43	Destabilization of fructose 1,6-bisphosphatase–Z-line interactions is a mechanism of glyconeogenesis down-regulation in vivo. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 622-628.	4.1	9
44	A comparative study on the sensitivity of Cyprinus carpio muscle and liver FBPase toward AMP and calcium. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2012, 162, 51-55.	1.6	5
45	Muscle FBPase binds to cardiomyocyte mitochondria under glycogen synthase kinaseâ€3 inhibition or elevation of cellular Ca ²⁺ level. FEBS Letters, 2012, 586, 13-19.	2.8	27
46	Nuclear targeting of FBPase in HL-1 cells is controlled by beta-1 adrenergic receptor-activated Gs protein signaling cascade. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 871-877.	4.1	22
47	Muscle FBPase is targeted to nucleus by its ₂₀₃ KKKGK ₂₀₇ sequence. Proteins: Structure, Function and Bioinformatics, 2009, 77, 262-267.	2.6	17
48	Evolutionary conserved Nâ€ŧerminal region of human muscle fructose 1,6â€bisphosphatase regulates its activity and the interaction with aldolase. Proteins: Structure, Function and Bioinformatics, 2008, 72, 209-216.	2.6	18