Rony Seger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090336/publications.pdf

Version: 2024-02-01

PONY SECER

#	Article	IF	CITATIONS
1	GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch. Cell Communication and Signaling, 2022, 20, 5.	2.7	6
2	Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Reports, 2022, 38, 110418.	2.9	12
3	ERK1b, a 46â€kDa ERK isoform that is differentially regulated by MEK. Cell Biology International, 2022, , .	1.4	2
4	Applying imaging flow cytometry and immunofluorescence in studying the dynamic Golgi structure in cultured cells. STAR Protocols, 2022, 3, 101278.	0.5	2
5	Mitotic HOOK3 phosphorylation by ERK1c drives microtubule-dependent Golgi destabilization and fragmentation. IScience, 2021, 24, 102670.	1.9	9
6	Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells, 2021, 10, 3466.	1.8	17
7	Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. International Journal of Molecular Sciences, 2020, 21, 6102.	1.8	32
8	Calcium-Mediated Interactions Regulate the Subcellular Localization of Extracellular Signal-Regulated Kinases (ERKs). Cellular Physiology and Biochemistry, 2020, 54, 474-492.	1.1	7
9	Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. International Journal of Molecular Sciences, 2019, 20, 1194.	1.8	121
10	The Nuclear Translocation of Mitogen-Activated Protein Kinases: Molecular Mechanisms and Use as Novel Therapeutic Target. Neuroendocrinology, 2019, 108, 121-131.	1.2	48
11	Beta-Like Importins Mediate the Nuclear Translocation of MAPKs. Cellular Physiology and Biochemistry, 2019, 52, 802-821.	1.1	16
12	Nuclear ERK Translocation is Mediated by Protein Kinase CK2 and Accelerated by Autophosphorylation. Cellular Physiology and Biochemistry, 2019, 53, 366-387.	1.1	23
13	RAF, MEK and ERK Inhibitors as Anti-Cancer Drugs: Intrinsic and Acquired Resistance as a Major Therapeutic Challenge. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 89-116.	0.1	1
14	The nuclear translocation of the kinases p38 and JNK promotes inflammation-induced cancer. Science Signaling, 2018, 11, .	1.6	36
15	Gq-Induced Apoptosis is Mediated by AKT Inhibition That Leads to PKC-Induced JNK Activation. Cellular Physiology and Biochemistry, 2018, 50, 121-135.	1.1	14
16	Pigment Epithelium-Derived Factor and its Phosphomimetic Mutant Induce JNK-Dependent Apoptosis and P38-Mediated Migration Arrest. Cellular Physiology and Biochemistry, 2018, 49, 512-529.	1.1	11
17	Intrinsically active MEK variants are differentially regulated by proteinases and phosphatases. Scientific Reports, 2018, 8, 11830.	1.6	22
18	Mek. , 2018, , 3035-3042.		0

#	Article	IF	CITATIONS
19	Direct binding of MEK1 and MEK2 to AKT induces Foxo1 phosphorylation, cellular migration and metastasis. Scientific Reports, 2017, 7, 43078.	1.6	31
20	High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry. Scientific Reports, 2017, 7, 788.	1.6	23
21	Differential roles of PKC isoforms (PKCs) and Ca 2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells. Molecular and Cellular Endocrinology, 2017, 439, 141-154.	1.6	11
22	Pigment epithelium-derived factor and its phosphomimetic mutant induce JNK-dependent apoptosis and p38-mediated migration arrest Journal of Biological Chemistry, 2017, 292, 8849.	1.6	2
23	Gq protein-induced apoptosis is mediated by AKT kinase inhibition that leads to protein kinase C-induced c-Jun N-terminal kinase activation Journal of Biological Chemistry, 2017, 292, 8848.	1.6	0
24	c-Src is activated by the epidermal growth factor receptor in a pathway that mediates JNK and ERK activation by gonadotropin-releasing hormone in COS7 cells Journal of Biological Chemistry, 2017, 292, 8851.	1.6	1
25	Calcium-mediated interactions regulate the subcellular localization of extracellular signal-regulated kinases Journal of Biological Chemistry, 2017, 292, 8850.	1.6	0
26	The Nuclear Translocation of ERK. Methods in Molecular Biology, 2017, 1487, 175-194.	0.4	19
27	Activation of Signaling Cascades by Weak Extremely Low Frequency Electromagnetic Fields. Cellular Physiology and Biochemistry, 2017, 43, 1533-1546.	1.1	19
28	Combined inhibition of MEK and nuclear ERK translocation has synergistic antitumor activity in melanoma cells. Scientific Reports, 2017, 7, 16345.	1.6	16
29	ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK Journal of Biological Chemistry, 2017, 292, 8854.	1.6	1
30	The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 1990.	1.8	28
31	GnRH Induces ERK-Dependent Bleb Formation in Gonadotrope Cells, Involving Recruitment of Members of a GnRH Receptor-Associated Signalosome to the Blebs. Frontiers in Endocrinology, 2017, 8, 113.	1.5	11
32	Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs Journal of Biological Chemistry, 2017, 292, 8852.	1.6	1
33	Involvement of the activation loop of ERK in the detachment from cytosolic anchoring Journal of Biological Chemistry, 2017, 292, 8853.	1.6	3
34	Role of dynamin, Src, and Ras in the protein kinase C-mediated activation of ERK by gonadotropin-releasing hormone Journal of Biological Chemistry, 2017, 292, 8855.	1.6	0
35	Extremely low \hat{e} frequency magnetic fields and risk of childhood leukemia: A risk assessment by the ARIMMORA consortium. Bioelectromagnetics, 2016, 37, 183-189.	0.9	31
36	The ERK cascade inhibitors: Towards overcoming resistance. Drug Resistance Updates, 2016, 25, 1-12.	6.5	67

#	Article	IF	CITATIONS
37	The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Current Opinion in Cell Biology, 2016, 39, 15-20.	2.6	87
38	Myotubularin-related protein 7 inhibits insulin signaling in colorectal cancer. Oncotarget, 2016, 7, 50490-50506.	0.8	21
39	Gonadotropin-Releasing Hormone. , 2016, , 1938-1941.		0
40	Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Molecular Biology of the Cell, 2015, 26, 2475-2490.	0.9	52
41	The nuclear translocation of ERK1/2 as an anticancer target. Nature Communications, 2015, 6, 6685.	5.8	104
42	Role of PI4K and PI3K-AKT in ERK1/2 activation by GnRH in the pituitary gonadotropes. Molecular and Cellular Endocrinology, 2015, 415, 12-23.	1.6	18
43	Mitotic Golgi translocation of ERK1c is mediated by PI4KIIIβ/14-3-3γ shuttling complex. Journal of Cell Science, 2015, 128, 4083-95.	1.2	20
44	Dynamic distribution of ERK, p38 and JNK during the development of pancreatic ductal adenocarcinoma. Acta Histochemica, 2014, 116, 1434-1442.	0.9	6
45	Beta-Like Importins Mediate the Nuclear Translocation of Mitogen-Activated Protein Kinases. Molecular and Cellular Biology, 2014, 34, 259-270.	1.1	32
46	Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells. Development (Cambridge), 2014, 141, 2611-2620.	1.2	76
47	Differential signaling of the GnRH receptor in pituitary gonadotrope cell lines and prostate cancer cell lines. Molecular and Cellular Endocrinology, 2013, 369, 107-118.	1.6	17
48	ERK as a Model for Systems Biology ofÂEnzymeÂKinetics in Cells. Current Biology, 2013, 23, R972-R979.	1.8	52
49	Two initiation sites of early detection of colon cancer revealed by localization of pERK1/2 in the nuclei or in aggregates at the perinuclear region of the tumor cells. Acta Histochemica, 2013, 115, 569-576.	0.9	2
50	The extra-cellular signal regulated kinases ERK1 and ERK2 segregate displaying distinct spatiotemporal characteristics in activated mast cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2070-2082.	1.9	5
51	Stimulated nuclear import by \hat{I}^2 -like importins. F1000prime Reports, 2013, 5, 41.	5.9	32
52	Mxi2 sustains ERK1/2 phosphorylation in the nucleus by preventing ERK1/2 binding to phosphatases. Biochemical Journal, 2012, 441, 571-578.	1.7	13
53	Nuclear localization of phosphorylated ERK1 and ERK2 as markers for the progression of ovarian cancer. International Journal of Oncology, 2011, 39, 649-56.	1.4	7
54	Two initiation sites of early detection of colon cancer, revealed by localization of pERK1/2 in the nuclei or in aggregates at the perinuclear region of tumor cells. International Journal of Oncology, 2011, 40, 782-8.	1.4	1

#	Article	IF	CITATIONS
55	CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 2011, 12, 391-398.	7.0	142
56	The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1619-1633.	1.9	708
57	Gq Protein-induced Apoptosis Is Mediated by AKT Kinase Inhibition That Leads to Protein Kinase C-induced c-Jun N-terminal Kinase Activation. Journal of Biological Chemistry, 2011, 286, 31022-31031a.	1.6	14
58	The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes and Cancer, 2011, 2, 195-209.	0.6	413
59	Pigment Epithelium-derived Factor and Its Phosphomimetic Mutant Induce JNK-dependent Apoptosis and p38-mediated Migration Arrest. Journal of Biological Chemistry, 2011, 286, 3540-3551.	1.6	29
60	Nuclear Extracellular Signal-Regulated Kinase 1 and 2 Translocation Is Mediated by Casein Kinase 2 and Accelerated by Autophosphorylation. Molecular and Cellular Biology, 2011, 31, 3515-3530.	1.1	73
61	The Ras Inhibitors Caveolin-1 and Docking Protein 1 Activate Peroxisome Proliferator-Activated Receptor γ through Spatial Relocalization at Helix 7 of Its Ligand-Binding Domain. Molecular and Cellular Biology, 2011, 31, 3497-3510.	1.1	39
62	Gonadotropin-Releasing Hormone. , 2011, , 1577-1580.		0
63	Deletion of Alloreactive T Cells by Veto Cytotoxic T Lymphocytes Is Mediated Through Extracellular Signal-Regulated Kinase Phosphorylation. Transplantation, 2010, 90, 380-386.	0.5	9
64	Calcium Regulation of EGF-Induced ERK5 Activation: Role of Lad1-MEKK2 Interaction. PLoS ONE, 2010, 5, e12627.	1.1	17
65	Phosphomimetic Mutants of Pigment Epithelium-Derived Factor with Enhanced Antiangiogenic Activity as Potent Anticancer Agents. Cancer Research, 2010, 70, 6247-6257.	0.4	31
66	Differential Role of PKC Isoforms in GnRH and Phorbol 12-Myristate 13-Acetate Activation of Extracellular Signal-Regulated Kinase and Jun N-Terminal Kinase. Endocrinology, 2010, 151, 4894-4907.	1.4	24
67	The MAP Kinase Signaling Cascades: A System of Hundreds of Components Regulates a Diverse Array of Physiological Functions. Methods in Molecular Biology, 2010, 661, 3-38.	0.4	489
68	The subcellular localization of MEK and ERK—A novel nuclear translocation signal (NTS) paves a way to the nucleus. Molecular and Cellular Endocrinology, 2010, 314, 213-220.	1.6	99
69	Ligand interaction scan (LIScan) in the study of ERK8. Biochemical and Biophysical Research Communications, 2010, 399, 37-41.	1.0	3
70	Determination of ERK Activity: Anti-phospho-ERK Antibodies and In Vitro Phosphorylation. Methods in Molecular Biology, 2010, 661, 39-58.	0.4	9
71	A Preformed Signaling Complex Mediates GnRH-Activated ERK Phosphorylation of Paxillin and FAK at Focal Adhesions in LÎ ² T2 Gonadotrope Cells. Molecular Endocrinology, 2009, 23, 1850-1864.	3.7	29
72	Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Genes and Development, 2009, 23, 1779-1790.	2.7	38

#	Article	IF	CITATIONS
73	The ERK signaling cascade—Views from different subcellular compartments. BioFactors, 2009, 35, 407-416.	2.6	111
74	Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation. Journal of Neurochemistry, 2008, 76, 910-918.	2.1	49
75	Conjugates of gonadotropin releasing hormone (GnRH) with carminic acid: Synthesis, generation of reactive oxygen species (ROS) and biological evaluation. Bioorganic and Medicinal Chemistry, 2008, 16, 6789-6798.	1.4	15
76	Distinct pathways for the involvement of WNK4 in the signaling of hypertonicity and EGF. FEBS Journal, 2008, 275, 1631-1642.	2.2	16
77	Identification and Characterization of a General Nuclear Translocation Signal in Signaling Proteins. Molecular Cell, 2008, 31, 850-861.	4.5	230
78	Identification of Extracellular Signal-regulated Kinase 1/2 and p38 MAPK as Regulators of Human Sperm Motility and Acrosome Reaction and as Predictors of Poor Spermatozoan Quality. Journal of Biological Chemistry, 2008, 283, 14479-14489.	1.6	100
79	Calcium-mediated Interactions Regulate the Subcellular Localization of Extracellular Signal-regulated Kinases. Journal of Biological Chemistry, 2008, 283, 11176-11189.	1.6	35
80	Calcium regulates ERK signaling by modulating its protein-protein interactions. Communicative and Integrative Biology, 2008, 1, 4-5.	0.6	76
81	ERK Signaling in Colorectal Cancer: A Preliminary Report on the Expression of Phosphorylated ERK and the Effects of Radiation Therapy. American Journal of Clinical Oncology: Cancer Clinical Trials, 2008, 31, 255-258.	0.6	8
82	PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>and MEK Interactions in Cancer. PPAR Research, 2008, 2008, 1-16.</mml:math 	1.1	49
83	Functional SDF-1 Secretion from BM Stromal Cells Is a Cell Contact-Dependent Event Mediated by Cx43 and Cx45 Gap-Junctions. Blood, 2008, 112, 319-319.	0.6	0
84	Role of Non-phosphorylated Activation Loop Residues in Determining ERK2 Dephosphorylation, Activity, and Subcellular Localization. Journal of Biological Chemistry, 2007, 282, 25114-25122.	1.6	7
85	MAPK- Kinases as Nucleo-Cytoplasmic Shuttles for PPARÎ ³ . Cell Cycle, 2007, 6, 1539-1548.	1.3	125
86	Interaction with MEK Causes Nuclear Export and Downregulation of Peroxisome Proliferator-Activated Receptor Î ³ . Molecular and Cellular Biology, 2007, 27, 803-817.	1.1	156
87	Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10607-10612.	3.3	106
88	DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: A Link to Histone Acetylation. Molecular Cell, 2007, 25, 297-308.	4.5	289
89	Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochemical Journal, 2007, 405, 559-568.	1.7	230
90	The MEK/ERK cascade: From signaling specificity to diverse functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1213-1226.	1.9	787

#	Article	IF	CITATIONS
91	The Role of ERK and XIAP in Tolerance Induction by Veto CTLs Blood, 2007, 110, 3256-3256.	0.6	0
92	The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors, 2006, 24, 21-44.	0.5	1,101
93	Gonadotropin-releasing hormone in apoptosis of prostate cancer cells. Cancer Letters, 2006, 234, 109-123.	3.2	63
94	Activation of Mitogen-activated protein kinase (MAPK) by GnRH is cell-context dependent. Molecular and Cellular Endocrinology, 2006, 252, 184-190.	1.6	70
95	Vimentin Binding to Phosphorylated Erk Sterically Hinders Enzymatic Dephosphorylation of the Kinase. Journal of Molecular Biology, 2006, 364, 938-944.	2.0	141
96	Variable phosphorylation states of pigment-epithelium–derived factor differentially regulate its function. Blood, 2006, 107, 2745-2752.	0.6	27
97	ERK1c regulates Golgi fragmentation during mitosis. Journal of Cell Biology, 2006, 172, 885-897.	2.3	85
98	A 50-kDa ERK-like protein is up-regulated by a dual altered peptide ligand that suppresses myasthenia gravis-associated responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18232-18237.	3.3	8
99	The Detection of MAPK Signaling. Current Protocols in Molecular Biology, 2006, 73, Unit 18.12.	2.9	3
100	Extracellular phosphorylation converts pigment epithelium–derived factor from a neurotrophic to an antiangiogenic factor. Blood, 2005, 105, 670-678.	0.6	60
101	Protein–Protein Interactions in the Regulation of the Extracellular Signal-Regulated Kinase. Molecular Biotechnology, 2005, 29, 57-74.	1.3	101
102	The ERK Cascade: A Prototype of MAPK Signaling. Molecular Biotechnology, 2005, 31, 151-174.	1.3	383
103	The Neurotrophic and Antiangiogenic Functions of PEDF: A Reflection of its Variable Phosphorylation States. Current Genomics, 2005, 6, 597-607.	0.7	1
104	Manipulation of redox signaling in mammalian cells enabled by controlled photogeneration of reactive oxygen species. Journal of Cell Science, 2005, 118, 1957-1969.	1.2	38
105	The Detection of MAPK Signaling. Current Protocols in Cell Biology, 2005, 28, Unit 14.3.	2.3	3
106	Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve. Neuron, 2005, 45, 715-726.	3.8	483
107	Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 2005, 115, 168-176.	3.9	61
108	The Role of ERK5 Signaling in Tolerance Induction by Veto CTLs Blood, 2005, 106, 3302-3302.	0.6	1

#	Article	IF	CITATIONS
109	The ERK Cascade As a Prototype of MAPK Signaling Pathways. , 2004, 250, 1-28.		52
110	MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. Journal of Cell Science, 2004, 117, 1773-1784.	1.2	60
111	Gonadotropin-Releasing Hormone Induces Apoptosis of Prostate Cancer Cells. Cancer Research, 2004, 64, 5736-5744.	0.4	68
112	Extracellular Signal-Regulated Kinase, Jun N-Terminal Kinase, p38, and c-Src Are Involved in Gonadotropin-Releasing Hormone-Stimulated Activity of the Glycoprotein Hormone Follicle-Stimulating Hormone β-Subunit Promoter. Endocrinology, 2004, 145, 2228-2244.	1.4	84
113	Extracellular Signal-Regulated Kinase 1c (ERK1c), a Novel 42-Kilodalton ERK, Demonstrates Unique Modes of Regulation, Localization, and Function. Molecular and Cellular Biology, 2004, 24, 10000-10015.	1.1	58
114	SB203580 Induces Prolonged B-Raf Activation and Promotes Neuronal Differentiation upon EGF Treatment of PC12 Cells. Biochemistry (Moscow), 2004, 69, 799-805.	0.7	3
115	The Molecular Mechanism of MAPK / ERK Inactivation. Current Genomics, 2004, 5, 385-393.	0.7	29
116	Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. International Journal of Cancer, 2003, 107, 177-182.	2.3	71
117	Down-Regulation of Steroidogenic Response to Gonadotropins in Human and Rat Preovulatory Granulosa Cells Involves Mitogen-Activated Protein Kinase Activation and Modulation of DAX-1 and Steroidogenic Factor-1. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2288-2299.	1.8	88
118	Maturation-Promoting Factor Governs Mitogen-Activated Protein Kinase Activation and Interphase Suppression During Meiosis of Rat Oocytes1. Biology of Reproduction, 2003, 68, 1282-1290.	1.2	42
119	c-Src Is Activated by the Epidermal Growth Factor Receptor in a Pathway That Mediates JNK and ERK Activation by Gonadotropin-releasing Hormone in COS7 Cells. Journal of Biological Chemistry, 2003, 278, 32618-32630.	1.6	69
120	Extracellular Signal-Regulated Kinase and c-Src, But Not Jun N-Terminal Kinase, Are Involved in Basal and Gonadotropin-Releasing Hormone-Stimulated Activity of the Glycoprotein Hormone α-Subunit Promoter. Endocrinology, 2003, 144, 612-622.	1.4	47
121	Interactions of β and γENaC with Nedd4 Can Be Facilitated by an ERK-mediated Phosphorylation. Journal of Biological Chemistry, 2002, 277, 13539-13547.	1.6	119
122	Activation of MAPK Cascades by GnRH: ERK and Jun N-Terminal Kinase Are Involved in Basal and GnRH-Stimulated Activity of the Glycoprotein Hormone LHβ-Subunit Promoter. Endocrinology, 2002, 143, 1018-1025.	1.4	115
123	Mechanisms of gonadotropin desensitization. Molecular and Cellular Endocrinology, 2002, 187, 69-74.	1.6	64
124	Ras-Signaling Pathways: Positive and Negative Regulation of Tau Expression in PC12 Cells. Journal of Neurochemistry, 2002, 70, 428-431.	2.1	29
125	Casein kinase 2 specifically binds to and phosphorylates the carboxy termini of ENaC subunits. FEBS Journal, 2002, 269, 4551-4558.	0.2	39
126	ATM-dependent activation of the gene encoding MAP kinase phosphatase 5 by radiomimetic DNA damage. Oncogene, 2002, 21, 849-855.	2.6	31

#	Article	IF	CITATIONS
127	Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene, 2002, 21, 1299-1303.	2.6	431
128	Regulation of p53. Annals of the New York Academy of Sciences, 2002, 973, 374-383.	1.8	92
129	Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene, 2001, 20, 147-155.	2.6	332
130	Non-regulated and stimulated mechanisms cooperate in the nuclear accumulation of MEK1. Oncogene, 2001, 20, 7588-7596.	2.6	41
131	Intracellular Signaling Pathways Mediated by the Gonadotropin-Releasing Hormone (GnRH) Receptor. Archives of Medical Research, 2001, 32, 499-509.	1.5	165
132	Role of Dynamin, Src, and Ras in the Protein Kinase C-mediated Activation of ERK by Gonadotropin-releasing Hormone. Journal of Biological Chemistry, 2001, 276, 4554-4563.	1.6	90
133	Involvement of the Activation Loop of ERK in the Detachment from Cytosolic Anchoring. Journal of Biological Chemistry, 2001, 276, 24490-24497.	1.6	74
134	The ERK Signaling Cascade Inhibits Gonadotropin-stimulated Steroidogenesis. Journal of Biological Chemistry, 2001, 276, 13957-13964.	1.6	209
135	The CK2 Phosphorylation of Vitronectin. Journal of Biological Chemistry, 2001, 276, 16998-17006.	1.6	50
136	Altered Regulation of ERK1b by MEK1 and PTP-SL and Modified Elk1 Phosphorylation by ERK1b Are Caused by Abrogation of the Regulatory C-terminal Sequence of ERKs. Journal of Biological Chemistry, 2001, 276, 35280-35289.	1.6	45
137	Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs. Vitamins and Hormones, 2001, 63, 63-90.	0.7	42
138	Induction of intracellular signalling by cyclic glycerophosphates and their deoxy analogues. FEBS Journal, 2000, 267, 2547-2554.	0.2	9
139	Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene, 2000, 19, 3750-3756.	2.6	121
140	ERK1b, a 46-kDa ERK Isoform That Is Differentially Regulated by MEK. Journal of Biological Chemistry, 2000, 275, 15799-15808.	1.6	68
141	The Requirement of Both Extracellular Regulated Kinase and p38 Mitogen-activated Protein Kinase for Stimulation of Cytosolic Phospholipase A2 Activity by Either FcγRIIA or FcγRIIB in Human Neutrophils. Journal of Biological Chemistry, 2000, 275, 12416-12423.	1.6	60
142	Activation of MAPK Cascades by G-protein-coupled Receptors: The Case of Gonadotropin-releasing Hormone Receptor. Trends in Endocrinology and Metabolism, 2000, 11, 91-99.	3.1	301
143	Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases. FEBS Letters, 2000, 468, 37-42.	1.3	46
144	GRFβ, a Novel Regulator of Calcium Signaling, Is Expressed in Pancreatic Beta Cells and Brain. Journal of Biological Chemistry, 1999, 274, 24449-24452.	1.6	18

#	Article	IF	CITATIONS
145	Identification of a Cytoplasmic-Retention Sequence in ERK2. Journal of Biological Chemistry, 1999, 274, 30349-30352.	1.6	128
146	CPG16, a Novel Protein Serine/Threonine Kinase Downstream of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1999, 274, 2631-2636.	1.6	60
147	Phosphorylation of Insulin Receptor Substrate-1 (IRS-1) by Protein Kinase B Positively Regulates IRS-1 Function. Journal of Biological Chemistry, 1999, 274, 28816-28822.	1.6	167
148	LIS1 is a microtubule-associated phosphoprotein. FEBS Journal, 1999, 265, 181-188.	0.2	53
149	Fibroblast Growth Factor Promotes Recruitment of Skeletal Muscle Satellite Cells in Young and Old Rats. Journal of Histochemistry and Cytochemistry, 1999, 47, 23-42.	1.3	181
150	The Cytoskeletal Network Controls c-Jun Expression and Glucocorticoid Receptor Transcriptional Activity in an Antagonistic and Cell-Type-Specific Manner. Molecular and Cellular Biology, 1999, 19, 1742-1750.	1.1	41
151	Neu Differentiation Factor Stimulates Phosphorylation and Activation of the Sp1 Transcription Factor. Molecular and Cellular Biology, 1999, 19, 1961-1972.	1.1	85
152	Co-stimulation-dependent activation of a JNK-kinase in T lymphocytes. European Journal of Immunology, 1998, 28, 2320-2330.	1.6	71
153	Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. Journal of Molecular Neuroscience, 1998, 10, 75-98.	1.1	147
154	Stimulation of Jun N-Terminal Kinase (JNK) by Gonadotropin-Releasing Hormone in Pituitary αT3–1 Cell Line Is Mediated by Protein Kinase C, c-Src, and CDC42. Molecular Endocrinology, 1998, 12, 815-824.	3.7	105
155	ErbB Tyrosine Kinases and the Two Neuregulin Families Constitute a Ligand-Receptor Network. Molecular and Cellular Biology, 1998, 18, 6090-6101.	1.1	129
156	Specific and Differential Activation of Mitogen-Activated Protein Kinase Cascades by Unfamiliar Taste in the Insular Cortex of the Behaving Rat. Journal of Neuroscience, 1998, 18, 10037-10044.	1.7	276
157	In Situ Activation Pattern ofDrosophilaEGF Receptor Pathway During Development. Science, 1997, 277, 1103-1106.	6.0	360
158	Detection of ERK activation by a novel monoclonal antibody. FEBS Letters, 1997, 408, 292-296.	1.3	128
159	Activation of a 74 kDa plasma membrane protein kinase by hyperosmotic shocks in the halotolerant alga Dunaliella salina. Journal of Plant Physiology, 1997, 151, 429-436.	1.6	9
160	Signal transduction of the gonadotropin releasing hormone (GnRH) receptor: Cross-talk of calcium, protein kinase C (PKC), and arachidonic acid. Cellular and Molecular Neurobiology, 1995, 15, 527-544.	1.7	44
161	Selective requirement for MAP kinase activation in thymocyte differentiation. Nature, 1995, 373, 620-623.	13.7	386
162	The MAPK signaling cascade. FASEB Journal, 1995, 9, 726-735.	0.2	3,203

#	Article	IF	CITATIONS
163	Differential Activation of Mitogen-activated Protein Kinase and S6 Kinase Signaling Pathways by 12-O-Tetradecanoylphorbol-13-acetate (TPA) and Insulin. Journal of Biological Chemistry, 1995, 270, 28325-28330.	1.6	45
164	Inactivation of Glycogen Synthase Kinase-3 by Epidermal Growth Factor Is Mediated by Mitogen-activated Protein Kinase/p90 Ribosomal Protein S6 Kinase Signaling Pathway in NIH/3T3 Cells. Journal of Biological Chemistry, 1995, 270, 987-990.	1.6	201
165	Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Molecular Brain Research, 1995, 34, 1-17.	2.5	61
166	BMP-4 Regulates the Dorsal–Ventral Differences in FGF/MAPKK-Mediated Mesoderm Induction inXenopus. Developmental Biology, 1995, 172, 242-252.	0.9	55
167	The MAP Kinase Cascade. , 1995, 50, 131-159.		61
168	Construction of nucleosome cores from defined DNA sequences of prokaryotic origin. International Journal of Biological Macromolecules, 1992, 14, 249-256.	3.6	1
169	Identification of an Activator of the Microtubule-Associated Protein 2 Kinases ERK1 and ERK2 in PC12 Cells Stimulated with Nerve Growth Factor or Bradykinin. Journal of Neurochemistry, 1992, 59, 147-156.	2.1	59
170	Growth Factorâ€Stimulated Phosphorylation Cascades: Activation of Growth Factorâ€Stimulated Map Kinase. Novartis Foundation Symposium, 1992, 164, 113-131.	1.2	13
171	Mek1. The AFCS-nature Molecule Pages, 0, , .	0.2	6
172	Mechanism of Mitogen-Activated Protein Kinase Activation by Gonadotropin-Releasing Hormone in the Pituitary αT3–1 Cell Line: Differential Roles of Calcium and Protein Kinase C. , 0, .		38