List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematology,the, 2017, 4, e258-e271.	4.6	236
2	Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 52.	3.3	86
3	Predictive value of NT-pro BNP after acute myocardial infarction: Relation with acute and chronic infarct size and myocardial function. International Journal of Cardiology, 2011, 147, 118-123.	1.7	77
4	Association of copeptin with myocardial infarct size and myocardial function after ST segment elevation myocardial infarction. Heart, 2013, 99, 1525-1529.	2.9	65
5	Prognostic Implications of Global Longitudinal Strain by Feature-Tracking Cardiac Magnetic Resonance in ST-Elevation Myocardial Infarction. Circulation: Cardiovascular Imaging, 2019, 12, e009404.	2.6	61
6	Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2017, 6, 640-649.	1.0	58
7	Late microvascular obstruction after acute myocardial infarction: Relation with cardiac and inflammatory markers. International Journal of Cardiology, 2012, 157, 391-396.	1.7	56
8	Comprehensive Cardiovascular Magnetic Resonance Assessment in Patients With Sarcoidosis and Preserved Left Ventricular Ejection Fraction. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	53
9	A Cytokine-Like Protein Dickkopf-Related Protein 3 Is Atheroprotective. Circulation, 2017, 136, 1022-1036.	1.6	47
10	Cardiac troponin T and creatine kinase predict midâ€ŧerm infarct size and left ventricular function after acute myocardial infarction: A cardiac MR study. Journal of Magnetic Resonance Imaging, 2011, 33, 847-854.	3.4	41
11	Fibroblast growth factor 23 as novel biomarker for early risk stratification after ST-elevation myocardial infarction. Heart, 2017, 103, 856-862.	2.9	41
12	Prognosis-based definition of left ventricular remodeling after ST-elevation myocardial infarction. European Radiology, 2019, 29, 2330-2339.	4.5	40
13	T1 and T2 mapping for evaluation of myocardial involvement in patients with ANCA-associated vasculitides. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 6.	3.3	39
14	Comparison of wall thickening and ejection fraction by cardiovascular magnetic resonance and echocardiography in acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 22.	3.3	38
15	Skeletal Muscle Disorders: A Noncardiac Source of Cardiac Troponin T. Circulation, 2022, 145, 1764-1779.	1.6	38
16	Relation of Lowâ€Ðensity Lipoprotein Cholesterol With Microvascular Injury and Clinical Outcome in Revascularized STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	3.7	37
17	Timeâ€Dependent Myocardial Necrosis in Patients With STâ€Segment–Elevation Myocardial Infarction Without Angiographic Collateral Flow Visualized by Cardiac Magnetic Resonance Imaging: Results From the Multicenter STEMIâ€SCAR Project. Journal of the American Heart Association, 2019, 8, e012429.	3.7	36
18	Role of biomarkers in assessment of early infarct size after successful p-PCI for STEMI. Clinical Research in Cardiology, 2011, 100, 501-510.	3.3	35

#	Article	IF	CITATIONS
19	Impact of COVID-19 pandemic restrictions on ST-elevation myocardial infarction: a cardiac magnetic resonance imaging study. European Heart Journal, 2022, 43, 1141-1153.	2.2	35
20	PI3KÎ ³ Protects from Myocardial Ischemia and Reperfusion Injury through a Kinase-Independent Pathway. PLoS ONE, 2010, 5, e9350.	2.5	33
21	Quantification of regional functional improvement of infarcted myocardium after primary PTCA by contrastâ€enhanced magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 298-304.	3.4	31
22	Prognostic Value of Aortic Stiffness in Patients After STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	3.7	31
23	Diagnosis and treatment of cardiac amyloidosis: an interdisciplinary consensus statement. Wiener Klinische Wochenschrift, 2020, 132, 742-761.	1.9	31
24	Galectin-3: Relation to infarct scar and left ventricular function after myocardial infarction. International Journal of Cardiology, 2013, 163, 335-337.	1.7	27
25	Acute kidney injury is associated with microvascular myocardial damage following myocardial infarction. Kidney International, 2017, 92, 743-750.	5.2	27
26	Evaluation of myocardial involvement in patients with connective tissue disorders: a multi-parametric cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 67.	3.3	27
27	Is MRI equivalent to CT in the guidance of TAVR? A pilot study. European Radiology, 2018, 28, 4625-4634.	4.5	26
28	Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction. Clinical Research in Cardiology, 2021, 110, 61-71.	3.3	25
29	Novel biomarkers predicting cardiac function after acute myocardial infarction. British Medical Bulletin, 2016, 119, 63-74.	6.9	23
30	Biomarker assessment for early infarct size estimation in ST-elevation myocardial infarction. European Journal of Internal Medicine, 2019, 64, 57-62.	2.2	21
31	Prognostic implications of psoas muscle area in patients undergoing transcatheter aortic valve implantation. European Journal of Cardio-thoracic Surgery, 2019, 55, 210-216.	1.4	20
32	Acute myocardial infarction as a manifestation of systemic vasculitis. Wiener Klinische Wochenschrift, 2016, 128, 841-843.	1.9	19
33	Advanced myocardial tissue characterisation by a multi-component CMR protocol in patients with rheumatoid arthritis. European Radiology, 2017, 27, 4639-4649.	4.5	19
34	C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 338, 30-36.	1.7	19
35	Multimarker approach for the prediction of microvascular obstruction after acute ST-segment elevation myocardial infarction: a prospective, observational study. BMC Cardiovascular Disorders, 2016, 16, 239.	1.7	18
36	Association of aortic stiffness with biomarkers of myocardial wall stress after myocardial infarction. International Journal of Cardiology, 2014, 173, 253-258.	1.7	17

#	Article	IF	CITATIONS
37	Aortic stiffness is associated with elevated high-sensitivity cardiac troponin T concentrations at a chronic stage after ST-segment elevation myocardial infarction. Journal of Hypertension, 2015, 33, 1970-1976.	0.5	17
38	ACEF score adapted to ST-elevation myocardial infarction patients: The ACEF-STEMI score. International Journal of Cardiology, 2018, 264, 18-24.	1.7	17
39	Mitral annular plane systolic excursion by cardiac MR is an easy tool for optimized prognosis assessment in ST-elevation myocardial infarction. European Radiology, 2020, 30, 620-629.	4.5	17
40	Heart failure from ATTRwt amyloid cardiomyopathy is associated with poor prognosis. ESC Heart Failure, 2020, 7, 3919-3928.	3.1	17
41	Impact of infarct location and size on clinical outcome after ST-elevation myocardial infarction treated by primary percutaneous coronary intervention. International Journal of Cardiology, 2020, 301, 14-20.	1.7	16
42	Combined biomarker testing for the prediction of left ventricular remodelling in ST-elevation myocardial infarction. Open Heart, 2016, 3, e000485.	2.3	15
43	Oscillometric analysis compared with cardiac magnetic resonance for the assessment of aortic pulse wave velocity in patients with myocardial infarction. Journal of Hypertension, 2016, 34, 1746-1751.	0.5	15
44	Persistent T-wave inversion predicts myocardial damage after ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 241, 76-82.	1.7	14
45	Non-contrast MRI protocol for TAVI guidance: quiescent-interval single-shot angiography in comparison with contrast-enhanced CT. European Radiology, 2020, 30, 4847-4856.	4.5	14
46	Evolution of Myocardial Tissue Injury. JACC: Cardiovascular Imaging, 2022, 15, 1030-1042.	5.3	14
47	Left ventricular global function index: Relation with infarct characteristics and left ventricular ejection fraction after STEMI. International Journal of Cardiology, 2014, 175, 579-581.	1.7	13
48	Quantitative coronary CT angiography: absolute lumen sizing rather than %stenosis predicts hemodynamically relevant stenosis. European Radiology, 2016, 26, 3781-3789.	4.5	13
49	High sensitivity C-reactive protein is associated with worse infarct healing after revascularized ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 328, 191-196.	1.7	13
50	Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: a comparative prognostic evaluation of left ventricular functional parameters. Clinical Research in Cardiology, 2021, 110, 1599-1611.	3.3	13
51	Cardiac High-Energy Phosphate Metabolism Alters with Age as Studied in 196 Healthy Males with the Help of 31-Phosphorus 2-Dimensional Chemical Shift Imaging. PLoS ONE, 2014, 9, e97368.	2.5	13
52	Regional functional recovery after acute myocardial infarction: a cardiac magnetic resonance long-term study. International Journal of Cardiovascular Imaging, 2012, 28, 1445-1453.	1.5	12
53	Use and limitations of Cardiac Magnetic Resonance derived measures of aortic stiffness in patients after acute myocardial infarction. Magnetic Resonance Imaging, 2014, 32, 1259-1265.	1.8	12
54	Association of Myocardial Injury With Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Network Open, 2020, 3, e207030.	5.9	12

#	Article	IF	CITATIONS
55	Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	11
56	Prognostic significance of transaminases after acute ST-elevation myocardial infarction: insights from a cardiac magnetic resonance study. Wiener Klinische Wochenschrift, 2015, 127, 843-850.	1.9	11
57	Self-navigated 3D whole-heart MRA for non-enhanced surveillance of thoracic aortic dilation: A comparison to CTA. Magnetic Resonance Imaging, 2021, 76, 123-130.	1.8	11
58	Association of plasma interleukin-6 with infarct size, reperfusion injury, and adverse remodelling after ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 113-123.	1.0	11
59	Myocardial edema in acute myocarditis: relationship of T2 relaxometry and late enhancement burden by using dual-contrast turbo spin-echo MRI. International Journal of Cardiovascular Imaging, 2017, 33, 1789-1794.	1.5	10
60	Case report of a COVID-19-associated myocardial infarction with no obstructive coronary arteries: the mystery of the phantom embolus or local endothelitis. European Heart Journal - Case Reports, 2021, 5, ytaa521.	0.6	10
61	Heart rate and left ventricular adverse remodelling after ST-elevation myocardial infarction. International Journal of Cardiology, 2016, 219, 339-344.	1.7	9
62	Thyroid-stimulating hormone and adverse left ventricular remodeling following ST-segment elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 717-726.	1.0	9
63	The Spectrum of Caseous Mitral Annulus Calcifications. JACC: Case Reports, 2021, 3, 104-108.	0.6	9
64	Aortic Stiffness and Infarct Healing in Survivors of Acute ST‣egment–Elevation Myocardial Infarction. Journal of the American Heart Association, 2020, 9, e014740.	3.7	9
65	Biomarkers of Hemodynamic Stress and Aortic Stiffness after STEMI: A Cross-Sectional Analysis. Disease Markers, 2015, 2015, 1-7.	1.3	8
66	Baseline LV ejection fraction by cardiac magnetic resonance and 2D echocardiography after ST-elevation myocardial infarction – influence of infarct location and prognostic impact. European Radiology, 2020, 30, 663-671.	4.5	8
67	Association of C-Reactive Protein Velocity with Early Left Ventricular Dysfunction in Patients with First ST-Elevation Myocardial Infarction. Journal of Clinical Medicine, 2021, 10, 5494.	2.4	8
68	Association between inflammation and left ventricular thrombus formation following ST-elevation myocardial infarction. International Journal of Cardiology, 2022, 361, 1-6.	1.7	8
69	Self-navigated versus navigator-gated 3D MRI sequence for non-enhanced aortic root measurement in transcatheter aortic valve implantation. European Journal of Radiology, 2021, 137, 109573.	2.6	7
70	Determinants and prognostic relevance of aortic stiffness in patients with recent ST-elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2022, 38, 237-247.	1.5	7
71	Persistent spontaneous dissection of the left anterior descending coronary artery after emotional pressure. Wiener Klinische Wochenschrift, 2010, 122, 515-517.	1.9	6
72	Patterns of myocardial perfusion in the acute and chronic stage after myocardial infarction: A cardiac magnetic resonance study. European Journal of Radiology, 2012, 81, 767-772.	2.6	6

#	Article	IF	CITATIONS
73	Cardiac index after acute ST-segment elevation myocardial infarction measured with phase-contrast cardiac magnetic resonance imaging. European Radiology, 2016, 26, 1999-2008.	4.5	6
74	Relationship between admission Q waves and microvascular injury in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. International Journal of Cardiology, 2019, 297, 1-7.	1.7	6
75	Complete versus simplified Selvester QRS score for infarct severity assessment in ST-elevation myocardial infarction. BMC Cardiovascular Disorders, 2019, 19, 285.	1.7	6
76	Correlation of cardiovascular risk scores with myocardial high-energy phosphate metabolism. International Journal of Cardiology, 2011, 150, 208-210.	1.7	5
77	Safety and efficacy of direct Cardiac Shockwave Therapy in patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting (the CAST-HF trial): study protocol for a randomized controlled trial. Trials, 2020, 21, 447.	1.6	5
78	A novel approach to determine aortic valve area with phase-contrastÂcardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 7.	3.3	5
79	Serpentine-like right atrial mass and fulminant bilateral pulmonary embolism during treatment with rivaroxaban. International Journal of Cardiovascular Imaging, 2016, 32, 1001-1002.	1.5	4
80	Impact of posteromedial papillary muscle infarction on mitral regurgitation during ST-segment elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2020, 36, 503-511.	1.5	4
81	Estimating the extent of myocardial damage in patients with STEMI using the DETERMINE score. Open Heart, 2021, 8, e001538.	2.3	3
82	Glycemic Status and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Imaging, 2021, 14, 1875-1877.	5.3	3
83	Minireview: Transaortic Transcatheter Aortic Valve Implantation: Is There Still an Indication?. Frontiers in Cardiovascular Medicine, 2022, 9, 798154.	2.4	2
84	Coronary malformation with multiple fistulae. International Journal of Cardiology, 2012, 155, e7-e8.	1.7	1
85	When cardiac surgery comes to its limits: a case report of pericardial mesothelioma invading the myocardium. European Heart Journal - Case Reports, 2021, 5, ytab237.	0.6	1
86	Congenital absence of a left-sided pericardium. European Heart Journal - Case Reports, 2021, 5, ytab423.	0.6	1
87	Cardiac magnetic resonance imaging improves prognostic stratification of patients with ST-elevation myocardial infarction and preserved ejection fraction. European Heart Journal Open, 2021, 1, .	2.3	1
88	Prevalence and prognostic impact of mitral annular disjunction in patients with STEMI – A cardiac magnetic resonance study. Journal of Cardiology, 2022, , .	1.9	1
89	Measuring bone defects for acetabular revision surgery for choosing an appropriate reconstruction strategy: A concept study on plastic models. Computers in Biology and Medicine, 2019, 111, 103336.	7.0	0
90	Cardiac exercise imaging using a 3-tesla magnetic resonance-conditional pedal ergometer: Preliminary results in healthy volunteers and patients with known or suspected coronary artery disease. Cardiology Journal, 2021, , .	1.2	0

#	Article	IF	CITATIONS
91	Prognostic value of depressed cardiac index after STEMI: a phase-contrast magnetic resonance study. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 53-61.	1.0	0
92	Incidental diagnosis of a complicated left ventricular non-compaction cardiomyopathy mimicking a cardiac haematoma. European Heart Journal - Case Reports, 2021, 5, ytab194.	0.6	0