List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
2	Telomere Shortening Triggers Senescence of Human Cells through a Pathway Involving ATM, p53, and p21CIP1, but Not p16INK4a. Molecular Cell, 2004, 14, 501-513.	9.7	1,128
3	Cellular Senescence in Aging Primates. Science, 2006, 311, 1257-1257.	12.6	910
4	Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401, 173-177.	27.8	808
5	Bypass of Senescence After Disruption of p21 ^{<i>CIP1/WAF1</i>} Gene in Normal Diploid Human Fibroblasts. Science, 1997, 277, 831-834.	12.6	767
6	L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature, 2019, 566, 73-78.	27.8	701
7	Accumulation of senescent cells in mitotic tissue of aging primates. Mechanisms of Ageing and Development, 2007, 128, 36-44.	4.6	511
8	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	6.7	481
9	Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation. Molecular and Cellular Biology, 2001, 21, 7207-7217.	2.3	368
10	Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell, 2013, 12, 247-256.	6.7	355
11	Cellular senescence and organismal aging. Mechanisms of Ageing and Development, 2008, 129, 467-474.	4.6	325
12	LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metabolism, 2019, 29, 871-885.e5.	16.2	299
13	c-Myc Regulates Cyclin D-Cdk4 and -Cdk6 Activity but Affects Cell Cycle Progression at Multiple Independent Points. Molecular and Cellular Biology, 1999, 19, 4672-4683.	2.3	296
14	Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging, 2013, 5, 867-883.	3.1	280
15	Reduced Expression of MYC Increases Longevity and Enhances Healthspan. Cell, 2015, 160, 477-488.	28.9	238
16	Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics, 2014, 15, 583.	2.8	233
17	Role of p14 ARF in Replicative and Induced Senescence of Human Fibroblasts. Molecular and Cellular Biology, 2001, 21, 6748-6757.	2.3	220
18	Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene, 1999, 18, 2934-2941.	5.9	201

#	Article	IF	CITATIONS
19	The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell, 2012, 11, 722-725.	6.7	200
20	Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell, 2017, 31, 142-156.	16.8	190
21	Can ends justify the means?: Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9078-9081.	7.1	175
22	Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16INK4a. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3645-3650.	7.1	162
23	Regulation of Cellular Senescence by Polycomb Chromatin Modifiers through Distinct DNA Damage- and Histone Methylation-Dependent Pathways. Cell Reports, 2018, 22, 3480-3492.	6.4	161
24	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature Metabolism, 2020, 2, 1284-1304.	11.9	157
25	The role of retrotransposable elements in ageing and age-associated diseases. Nature, 2021, 596, 43-53.	27.8	156
26	Regulation of growth arrest in senescence: Telomere damage is not the end of the story. Mechanisms of Ageing and Development, 2006, 127, 16-24.	4.6	152
27	Aging by epigenetics—A consequence of chromatin damage?. Experimental Cell Research, 2008, 314, 1909-1917.	2.6	143
28	Ageâ€associated increase in heterochromatic marks in murine and primate tissues. Aging Cell, 2011, 10, 292-304.	6.7	131
29	Stochastic Variation in Telomere Shortening Rate Causes Heterogeneity of Human Fibroblast Replicative Life Span. Journal of Biological Chemistry, 2004, 279, 17826-17833.	3.4	124
30	Reorganization of chromosome architecture in replicative cellular senescence. Science Advances, 2016, 2, e1500882.	10.3	122
31	Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduction and Targeted Therapy, 2021, 6, 245.	17.1	119
32	Gene targeting and somatic cell genetics: a rebirth or a coming of age?. Trends in Genetics, 1999, 15, 88-90.	6.7	112
33	Differentiation between Senescence (M1) and Crisis (M2) in Human Fibroblast Cultures. Experimental Cell Research, 1999, 253, 519-522.	2.6	108
34	Epigenetic Control of Aging. Antioxidants and Redox Signaling, 2011, 14, 241-259.	5.4	102
35	Involvement of the INK4a/Arf gene locus in senescence. Aging Cell, 2003, 2, 145-150.	6.7	100
36	Analysis of cell cycle phases and progression in cultured mammalian cells. Methods, 2007, 41, 143-150.	3.8	87

#	Article	IF	CITATIONS
37	Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. Journal of Cell Science, 2002, 115, 153-164.	2.0	81
38	Loss of retinoblastoma but not p16 function allows bypass of replicative senescence in human fibroblasts. EMBO Reports, 2003, 4, 1061-1065.	4.5	76
39	DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression. Cancer Research, 2016, 76, 594-606.	0.9	76
40	Abolition of Cyclin-Dependent Kinase Inhibitor p16 Ink4a and p21 Cip1/Waf1 Functions Permits Ras-Induced Anchorage-Independent Growth in Telomerase-Immortalized Human Fibroblasts. Molecular and Cellular Biology, 2003, 23, 2859-2870.	2.3	70
41	Systemic Age-Associated DNA Hypermethylation of ELOVL2 Gene: In Vivo and In Vitro Evidences of a Cell Replication Process. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1015-1023.	3.6	66
42	Proteomic profiling of Myc-associated proteinsÂ. Cell Cycle, 2010, 9, 4908-4921.	2.6	63
43	Telomerase Expression in Normal Human Fibroblasts Stabilizes DNA 5-Methylcytosine Transferase I. Journal of Biological Chemistry, 2003, 278, 19904-19908.	3.4	58
44	Sleeping dogs of the genome. Science, 2014, 346, 1187-1188.	12.6	54
45	Death by transposition $\hat{a} \in$ "the enemy within?. BioEssays, 2013, 35, 1035-1043.	2.5	53
46	The effects of aging on the expression of Wnt pathway genes in mouse tissues. Age, 2014, 36, 9618.	3.0	50
47	Loss of Protooncogene c-Myc Function Impedes G1 Phase Progression Both before and after the Restriction Point. Molecular Biology of the Cell, 2003, 14, 823-835.	2.1	47
48	The dark side of circulating nucleic acids. Aging Cell, 2016, 15, 398-399.	6.7	45
49	Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence. Aging Cell, 2008, 2, 295-304.	6.7	42
50	A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age, 2014, 36, 9637.	3.0	41
51	Telomeres Limit Cancer Growth by Inducing Senescence: Long-Sought In Vivo Evidence Obtained. Cancer Cell, 2007, 11, 389-391.	16.8	40
52	How Does Proliferative Homeostasis Change With Age? What Causes It and How Does It Contribute to Aging?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 164-166.	3.6	39
53	SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in longâ€lived <i>Myc</i> hypomorphic mice. Aging Cell, 2019, 18, e12947.	6.7	39
54	Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle, 2011, 10, 2184-2196.	2.6	38

#	Article	IF	CITATIONS
55	Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging, 2011, 3, 955-967.	3.1	35
56	Loss of retinoblastoma but not p16 function allows bypass of replicative senescence in human fibroblasts. EMBO Reports, 2003, 4, 1061-1065.	4.5	33
57	Phase separation of the LINE-1 ORF1 protein is mediated by the N-terminus and coiled-coil domain. Biophysical Journal, 2021, 120, 2181-2191.	0.5	32
58	Cellular Senescence, Epigenetic Switches and c-Myc. Cell Cycle, 2006, 5, 2319-2323.	2.6	29
59	Sirt6 regulates lifespan in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	29
60	Engineering the serine/threonine protein kinase Raf-1 to utilise an orthogonal analogue of ATP substituted at the N 6 position. FEBS Letters, 2004, 556, 26-34.	2.8	23
61	Mitochondria: Masters of Epigenetics. Cell, 2016, 165, 1052-1054.	28.9	19
62	DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age. Aging, 2016, 8, 147-155.	3.1	17
63	Do senescence markers correlate in vitro and in situ within individual human donors?. Aging, 2018, 10, 278-289.	3.1	16
64	Biphasic Regulation of the Preproendothelin-1 Gene by c-myc*. Endocrinology, 1997, 138, 4584-4590.	2.8	13
65	How to learn new and interesting things from model systems based on "exotic" biological species. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19207-19208.	7.1	13
66	Enhancing Autophagy Diminishes Aberrant Ca2+ Homeostasis and Arrhythmogenesis in Aging Rabbit Hearts. Frontiers in Physiology, 2019, 10, 1277.	2.8	12
67	How to measure RNA expression in rare senescent cells expressing any specific protein such as p16Ink4a. Aging, 2013, 5, 120-129.	3.1	9
68	Phosphatidylenthanolamine Binding Protein aka Raf Kinase Inhibitor Protein: A Brief History of Its Discovery and the Remarkable Diversity of Biological Functions. Forum on Immunopathological Diseases and Therapeutics, 2011, 2, 1-12.	0.1	4
69	Contribution of Retrotransposable Elements to Aging. , 2017, , 297-321.		3
70	Somatic Cell Knockouts of Tumor Suppressor Genes. , 2003, 223, 187-206.		2
71	Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence. PLoS ONE, 2015, 10, e0118442.	2.5	2
72	Why do we grow old: is it because our cells just wear out, we run out of cells (or both), and what can we do about it?. Longevity & Healthspan, 2013, 2, 7.	6.7	1

#	Article	IF	CITATIONS
73	L1 drives HSC aging and affects prognosis of chronic myelomonocytic leukemia. Signal Transduction and Targeted Therapy, 2020, 5, 205.	17.1	1
74	Stress response gene ATF3 is a target of câ€myc in serumâ€induced cell proliferation. FASEB Journal, 2006, 20, A37.	0.5	0
75	The Role of Myofibroblast Senescence in Arrhythmogenesis of the Aged Infarcted Heart. FASEB Journal, 2018, 32, 717.13.	0.5	0
76	Fibroblast Senescence: A Risk Factor for Remodeling, Inflammation, and Arrhythmias in the Postâ€MI Heart. FASEB Journal, 2022, 36, .	0.5	0