Nathan Hollingsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2089581/publications.pdf

Version: 2024-02-01

36 papers

1,270 citations

394421 19 h-index 35 g-index

40 all docs

40 docs citations

times ranked

40

1830 citing authors

#	Article	IF	CITATIONS
1	Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid. Angewandte Chemie - International Edition, 2015, 54, 14164-14168.	13.8	134
2	Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array. ACS Nano, 2016, 10, 1139-1146.	14.6	120
3	Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Dalton Transactions, 2013, 42, 6775.	3.3	111
4	Hydrogenase biomimetics: Fe $<$ sub $>$ 2 $<$ /sub $>$ (CO) $<$ sub $>$ 4 $<$ /sub $>$ (Î $\frac{1}{4}$ -dppf)(Î $\frac{1}{4}$ -pdt) (dppf =) Tj ETQq0 0 0 rgBT /Ove Chemical Communications, 2014, 50, 945-947.		ff 50 627 Td 105
5	Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles. Chemistry of Materials, 2014, 26, 6281-6292.	6.7	86
6	Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors. Nanoscale, 2016, 8, 11067-11075.	5.6	64
7	Enhanced Photoresponse of FeS ₂ Films: The Role of Marcasite–Pyrite Phase Junctions. Advanced Materials, 2016, 28, 9602-9607.	21.0	64
8	Copperâ€Doped CdSe/ZnS Quantum Dots: Controllable Photoactivated Copper(I) Cation Storage and Release Vectors for Catalysis. Angewandte Chemie - International Edition, 2014, 53, 1598-1601.	13.8	58
9	Combined EXAFS, XRD, DRIFTS, and DFT Study of Nano Copper-Based Catalysts for CO ₂ Hydrogenation. ACS Catalysis, 2016, 6, 5823-5833.	11.2	51
10	Organozinc Aminoalcoholates: Synthesis, Structure, and Materials Chemistry. Inorganic Chemistry, 2008, 47, 12040-12048.	4.0	38
11	Insight into the Nature of Iron Sulfide Surfaces During the Electrochemical Hydrogen Evolution and CO ₂ Reduction Reactions. ACS Applied Materials & Interfaces, 2018, 10, 32078-32085.	8.0	33
12	Structural Study of the Reaction of Methylzinc Amino Alcoholates with Oxygen. Organometallics, 2010, 29, 3318-3326.	2.3	32
13	Hydrogenase biomimics containing redox-active ligands: Fe ₂ (CO) ₄ (ι⁄4-edt)(β ² -bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe ₄ 8€"S ₄ 1 _{1_{8utrogate. Dalton Transactions. 2019. 48. 6051-6060.}}	3.3	31
14	Synthesis of ternary sulfide nanomaterials using dithiocarbamate complexes as single source precursors. Nanoscale Advances, 2019, 1, 3056-3066.	4.6	26
15	Organocadmium Aminoalcoholates: Synthesis, Structure, and Materials Chemistry. Inorganic Chemistry, 2008, 47, 9706-9715.	4.0	25
16	Tin(II) aminoalkoxides and heterobimetallic derivatives: the structures of Sn6(O)4(dmae)4, Sn6(O)4(OEt)4 and [Sn(dmae)2Cd(acac)2]2. Applied Organometallic Chemistry, 2006, 20, 687-695.	3.5	23
17	Fluorinated models of the iron-only hydrogenase: An electrochemical study of the influence of an electron-withdrawing bridge on the proton reduction overpotential and catalyst stability. Journal of Electroanalytical Chemistry, 2013, 703, 14-22.	3.8	23
18	CO2 capture and electrochemical conversion using superbasic [P66614][124Triz]. Faraday Discussions, 2015, 183, 389-400.	3.2	21

#	Article	IF	CITATIONS
19	Doping Group IIB Metal Ions into Quantum Dot Shells via the Oneâ€Pot Decomposition of Metalâ€Dithiocarbamates. Advanced Optical Materials, 2015, 3, 704-712.	7.3	19
20	Synthesis and characterisation of new titanium amino-alkoxides: precursors for the formation of TiO2materials. Dalton Transactions, 2008, , 631-641.	3.3	18
21	Synthesis, Molecular Structures and Electrochemical Investigations of [FeFe]â€Hydrogenase Biomimics [Fe ₂ (CO) _{6â€<i>n</i>} (EPh ₃) <i>_n</i> (Âμâ€edt)] (E = P, As, S	b;)₂፲ŋ ETQ	q11 7 0.784 <mark>31</mark>
22	Fe(ii) and Fe(iii) dithiocarbamate complexes as single source precursors to nanoscale iron sulfides: a combined synthetic and in situ XAS approach. Nanoscale Advances, 2019, 1, 2965-2978.	4.6	16
23	Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. Nanoscale Advances, 2020, 2, 798-807.	4.6	16
24	Palladium(II) complexes with 2-acetylamino-5-mercapto-1,3,4-thiadiazolate (amta) ligands: Molecular structures of the all trans dipalladium "paddlewheel―Pd2(Î⅓-amta)4 and Pd(κ1-amta)2(κ2-dppe). Polyhedron, 2012, 44, 210-214.	2.2	14
25	Surface redox chemistry and mechanochemistry of insulating polystyrene nanospheres. Physical Chemistry Chemical Physics, 2015, 17, 1837-1846.	2.8	14
26	O ₂ Insertion into a Cadmium–Carbon Bond: Structural Characterization of Organocadmium Peroxides. Angewandte Chemie - International Edition, 2012, 51, 4108-4111.	13.8	13
27	Hydrogenase Biomimetics with Redox-Active Ligands: Synthesis, Structure, and Electrocatalytic Studies on [Fe2(CO)4(κ2-dppn)(Âμ-edt)] (edt = Ethanedithiolate; dppn =) Tj ETQq1 1 0.784314 rgBT /Overlock	102 1.7 504	1717d (1,8- <mark>bis</mark>
28	Organocadmium Hydrazide and Hydrazine Complexes. Organometallics, 2009, 28, 2650-2653.	2.3	7
29	The synthesis and reaction chemistry of new amino-functionalised tin(ii) alkoxides. Dalton Transactions, 2010, 39, 5446.	3.3	6
30	Illusive tungsten-imido-dithiocarbamate complexes: Facile carbon–nitrogen bond formation. Inorganic Chemistry Communication, 2011, 14, 1932-1936.	3.9	5
31	<i>In Situ</i> XAS of the Solvothermal Decomposition of Dithiocarbamate Complexes. Journal of Physics: Conference Series, 2013, 430, 012050.	0.4	5
32	Electrocatalytic proton reduction by [Fe(CO) 2 (κ 2 -dppv)(κ 1 -SAr) 2] (dppv = cis) Tj ETQq0 0 0 rgBT /Overlock	19. <u>T</u> f 50 2	22 ₂ Td (-1,2-b
33	New Organocadmium Hydrazine Adducts and Hydrazide Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 246-250.	2.0	4
34	{Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes. Nanomaterials, 2017, 7, 33.	4.1	2
35	Capture agents, conversion mechanisms, biotransformations and biomimetics: general discussion. Faraday Discussions, 2015, 183, 463-487.	3.2	1
36	Photoelectrochemistry: Enhanced Photoresponse of FeS2 Films: The Role of Marcasite-Pyrite Phase Junctions (Adv. Mater. 43/2016). Advanced Materials, 2016, 28, 9656-9656.	21.0	0