
T I Gombosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2088723/publications.pdf Version: 2024-02-01

TICOMBOSI

#	Article	IF	CITATIONS
1	A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics, 1999, 154, 284-309.	1.9	1,199
2	Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 2005, 110, .	3.3	631
3	Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 2012, 231, 870-903.	1.9	560
4	67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 2015, 347, 1261952.	6.0	403
5	Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2016, 2, e1600285.	4.7	393
6	ALFVÉN WAVE SOLAR MODEL (AWSoM): CORONAL HEATING. Astrophysical Journal, 2014, 782, 81.	1.6	356
7	Ionospheric control of the magnetosphere: conductance. Annales Geophysicae, 2004, 22, 567-584.	0.6	342
8	Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Science Reviews, 2007, 128, 745-801.	3.7	331
9	Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astronomy and Astrophysics, 2015, 583, A1.	2.1	265
10	Eruption of a Buoyantly Emerging Magnetic Flux Rope. Astrophysical Journal, 2004, 610, 588-596.	1.6	264
11	Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature, 2015, 526, 678-681.	13.7	260
12	Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. Journal of Geophysical Research, 2000, 105, 25053-25078.	3.3	245
13	Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. Journal of Geophysical Research, 2004, 109, .	3.3	238
14	Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0276.	6.0	222
15	Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 2004, 109, .	3.3	203
16	First in situ plasma and neutral gas measurements at comet Halley. Nature, 1986, 321, 282-285.	13.7	201
17	Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science, 2015, 348, 232-235.	6.0	195
18	A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations. Astrophysical Journal, 2003, 595, L57-L61.	1.6	179

#	Article	IF	CITATIONS
19	A Three-dimensional Flux Rope Model for Coronal Mass Ejections Based on a Loss of Equilibrium. Astrophysical Journal, 2003, 588, L45-L48.	1.6	175
20	Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation. Journal of Geophysical Research, 1998, 103, 1889-1904.	3.3	165
21	Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science, 2017, 356, 1069-1072.	6.0	161
22	Dust and neutral gas modeling of the inner atmospheres of comets. Reviews of Geophysics, 1986, 24, 667-700.	9.0	158
23	Electron impact ionization in the vicinity of comets. Journal of Geophysical Research, 1987, 92, 7341-7353.	3.3	158
24	Numerical Simulation of the Interaction of Two Coronal Mass Ejections from Sun to Earth. Astrophysical Journal, 2005, 634, 651-662.	1.6	154
25	Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy. Monthly Notices of the Royal Astronomical Society, 2017, 469, S130-S141.	1.6	153
26	Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. Journal of Geophysical Research, 2002, 107, SMP 6-1.	3.3	148
27	A Semiempirical Magnetohydrodynamical Model of the Solar Wind. Astrophysical Journal, 2007, 654, L163-L166.	1.6	148
28	Interaction of Mercury with the Solar Wind. Icarus, 2000, 143, 397-406.	1.1	146
29	MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS. Astrophysical Journal, 2013, 764, 23.	1.6	142
30	M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1162-1175.	1.6	139
31	Threeâ€dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations. Astrophysical Journal, 2008, 684, 1448-1460.	1.6	137
32	Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S253-S273.	1.6	137
33	Communityâ€wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 2013, 11, 369-385.	1.3	136
34	Solar wind stagnation near comets. Astrophysical Journal, 1985, 289, 807.	1.6	136
35	Three-dimensional MHD simulation of a flux rope driven CME. Journal of Geophysical Research, 2004, 109, .	3.3	130
36	Modeling of Cometary X-rays Caused by Solar Wind Minor Ions. Science, 1997, 276, 939-942.	6.0	127

#	Article	IF	CITATIONS
37	Semirelativistic Magnetohydrodynamics and Physics-Based Convergence Acceleration. Journal of Computational Physics, 2002, 177, 176-205.	1.9	127
38	Three-dimensional multiscale MHD model of cometary plasma environments. Journal of Geophysical Research, 1996, 101, 15233-15253.	3.3	126
39	MAGNETOSPHERIC STRUCTURE AND ATMOSPHERIC JOULE HEATING OF HABITABLE PLANETS ORBITING M-DWARF STARS. Astrophysical Journal, 2014, 790, 57.	1.6	124
40	Physics of Mass Loaded Plasmas. Space Science Reviews, 2000, 94, 429-671.	3.7	123
41	A Numerical Model of a Coronal Mass Ejection: Shock Development with Implications for the Acceleration of GeV Protons. Astrophysical Journal, 2004, 605, L73-L76.	1.6	123
42	A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVÉN WAVES. Astrophysical Journal, 2010, 725, 1373-1383.	1.6	123
43	Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model. Journal of Computational Physics, 2014, 268, 236-254.	1.9	123
44	Coronal Mass Ejection Shock and Sheath Structures Relevant to Particle Acceleration. Astrophysical Journal, 2005, 622, 1225-1239.	1.6	122
45	A strong, highly-tilted interstellar magnetic field near the Solar System. Nature, 2009, 462, 1036-1038.	13.7	122
46	Modeling ionospheric outflows and their impact on the magnetosphere, initial results. Journal of Geophysical Research, 2009, 114, .	3.3	114
47	THE DYNAMICS OF STELLAR CORONAE HARBORING HOT JUPITERS. I. A TIME-DEPENDENT MAGNETOHYDRODYNAMIC SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE HD 189733 PLANETARY SYSTEM. Astrophysical Journal, 2011, 733, 67.	1.6	114
48	The stellar wind cycles and planetary radio emission of the Ï,, Boo system. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3285-3298.	1.6	112
49	Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 489, 594-607.	1.6	112
50	Multifluid Blockâ€Adaptiveâ€Tree Solar wind Roeâ€ŧype Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results. Journal of Geophysical Research, 2009, 114, .	3.3	103
51	Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation. Journal of Geophysical Research, 2012, 117, .	3.3	103
52	MAGNETIZED JETS DRIVEN BY THE SUN: THE STRUCTURE OF THE HELIOSPHERE REVISITED. Astrophysical Journal Letters, 2015, 800, L28.	3.0	103
53	Model calculations of the dayside ionosphere of Venus: Energetics. Journal of Geophysical Research, 1980, 85, 7778-7786.	3.3	102
54	The interaction of electrons in the optical umbra of Venus with the planetary atmosphere—The origin of the nighttime ionosphere. Journal of Geophysical Research, 1979, 84, 2123-2127.	3.3	100

#	Article	IF	CITATIONS
55	A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. Journal of Geophysical Research, 1999, 104, 28361-28378.	3.3	98
56	Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework. Space Weather, 2007, 5, n/a-n/a.	1.3	97
57	NUMERICAL INVESTIGATION OF A CORONAL MASS EJECTION FROM AN ANEMONE ACTIVE REGION: RECONNECTION AND DEFLECTION OF THE 2005 AUGUST 22 ERUPTION. Astrophysical Journal, 2011, 738, 127.	1.6	97
58	The Plasma Environment of Comet 67P/Churyumov-Gerasimenko Throughout the Rosetta Main Mission. Space Science Reviews, 2007, 128, 133-166.	3.7	95
59	Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A7.	2.1	93
60	Plasma near Venus from the Venera 9 and 10 wideâ€angle analyzer data. Journal of Geophysical Research, 1978, 83, 3721-3728.	3.3	91
61	Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. Journal of Geophysical Research, 2003, 108, .	3.3	91
62	An adaptive MHD method for global space weather simulations. IEEE Transactions on Plasma Science, 2000, 28, 1956-1965.	0.6	90
63	The Orientation of the Local Interstellar Magnetic Field. Science, 2007, 316, 875-878.	6.0	90
64	Global MHD simulations of Mercury's magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 2015, 120, 4763-4775.	0.8	89
65	The Evolution of Coronal Mass Ejection Density Structures. Astrophysical Journal, 2005, 627, 1019-1030.	1.6	88
66	Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 2016, 588, A134.	2.1	88
67	Cometary Dust. Space Science Reviews, 2018, 214, 1.	3.7	88
68	STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2011, 728, 2.	1.6	87
69	Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2015, 1, e1500377.	4.7	87
70	Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S156-S169.	1.6	87
71	The comet Halley dust and gas environment. Space Science Reviews, 1986, 43, 1-104.	3.7	85
72	Hall magnetohydrodynamics on block-adaptive grids. Journal of Computational Physics, 2008, 227, 6967-6984.	1.9	85

#	Article	lF	CITATIONS
73	A GLOBAL WAVE-DRIVEN MAGNETOHYDRODYNAMIC SOLAR MODEL WITH A UNIFIED TREATMENT OF OPEN AND CLOSED MAGNETIC FIELD TOPOLOGIES. Astrophysical Journal, 2013, 778, 176.	1.6	85
74	DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL. Astrophysical Journal, 2017, 834, 173.	1.6	83
75	A timeâ€dependent theoretical model of the polar wind: Preliminary results. Geophysical Research Letters, 1985, 12, 167-170.	1.5	80
76	Numerical Investigation of the Homologous Coronal Mass Ejection Events from Active Region 9236. Astrophysical Journal, 2007, 659, 788-800.	1.6	80
77	A twoâ€dimensional model of the ionosphere of Venus. Journal of Geophysical Research, 1983, 88, 5595-5606.	3.3	79
78	TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA. Astrophysical Journal, 2010, 712, 1219-1231.	1.6	79
79	Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae. Nature Astronomy, 2020, 4, 533-540.	4.2	79
80	Extended magnetohydrodynamics with embedded particleâ€inâ€cell simulation of Ganymede's magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 1273-1293.	0.8	78
81	Initial Observations of the Nightside Ionosphere of Venus from Pioneer Venus Orbiter Radio Occultations. Science, 1979, 205, 99-102.	6.0	77
82	First observations of energetic particles near comet Halley. Nature, 1986, 321, 285-288.	13.7	77
83	THE IMPACT OF HOT JUPITERS ON THE SPIN-DOWN OF THEIR HOST STARS. Astrophysical Journal Letters, 2010, 723, L64-L67.	3.0	76
84	INTERACTIONS OF THE MAGNETOSPHERES OF STARS AND CLOSE-IN GIANT PLANETS. Astrophysical Journal, 2009, 704, L85-L88.	1.6	76
85	Powerful winds from low-mass stars: V374 Peg. Monthly Notices of the Royal Astronomical Society, 2011, 412, 351-362.	1.6	75
86	An upwind scheme for magnetohydrodynamics. , 1995, , .		72
87	Multiscale modeling of magnetospheric reconnection. Journal of Geophysical Research, 2007, 112, .	3.3	72
88	Extended MHD modeling of the steady solar corona and the solar wind. Living Reviews in Solar Physics, 2018, 15, 4.	7.8	72
89	Detection of a new "chemical―boundary at comet Halley. Geophysical Research Letters, 1986, 13, 613-616.	1.5	70
90	The friable sponge model of a cometary nucleus. Astrophysical Journal, 1984, 278, 449.	1.6	70

#	Article	IF	CITATIONS
91	Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results. Journal of Geophysical Research, 1994, 99, 21525.	3.3	68
92	Interchange instability in the inner magnetosphere associated with geosynchronous particle flux decreases. Geophysical Research Letters, 2002, 29, 88-1-88-4.	1.5	68
93	CHROMOSPHERE TO 1 au SIMULATION OF THE 2011 MARCH 7th EVENT: A COMPREHENSIVE STUDY OF CORONAL MASS EJECTION PROPAGATION. Astrophysical Journal, 2017, 834, 172.	1.6	68
94	A new model of cometary ionospheres. Journal of Geophysical Research, 1987, 92, 7331-7340.	3.3	67
95	Exoplanet transit variability: bow shocks and winds around HD 189733b. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2179-2187.	1.6	67
96	Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS. Astronomy and Astrophysics, 2015, 583, A4.	2.1	67
97	An icy-glue model of cometary nuclei. Nature, 1986, 324, 43-44.	13.7	66
98	Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA. Monthly Notices of the Royal Astronomical Society, 2017, 469, S108-S117.	1.6	66
99	Io's plasma environment during the Galileo flyby: Global three-dimensional MHD modeling with adaptive mesh refinement. Journal of Geophysical Research, 1998, 103, 9071-9081.	3.3	65
100	THE INTERACTION OF VENUS-LIKE, M-DWARF PLANETS WITH THE STELLAR WIND OF THEIR HOST STAR. Astrophysical Journal, 2015, 806, 41.	1.6	65
101	Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation. Advances in Space Research, 2000, 26, 139-149.	1.2	64
102	Using steady state MHD results to predict the global state of the magnetosphere-ionosphere system. Journal of Geophysical Research, 2001, 106, 30067-30076.	3.3	64
103	THE DYNAMICS OF STELLAR CORONAE HARBORING HOT JUPITERS. II. A SPACE WEATHER EVENT ON A HOT JUPITER. Astrophysical Journal, 2011, 738, 166.	1.6	64
104	The Dehydration of Water Worlds via Atmospheric Losses. Astrophysical Journal Letters, 2017, 847, L4.	3.0	64
105	The interaction between the magnetosphere of Saturn and Titan's ionosphere. Journal of Geophysical Research, 2001, 106, 6151-6160.	3.3	62
106	Solution-adaptive magnetohydrodynamics for space plasmas: sun-to-earth simulations. Computing in Science and Engineering, 2004, 6, 14-35.	1.2	62
107	Global Threeâ€Ðimensional Simulation of Earth's Dayside Reconnection Using a Twoâ€Way Coupled Magnetohydrodynamics With Embedded Particleâ€inâ€Cell Model: Initial Results. Journal of Geophysical Research: Space Physics, 2017, 122, 10,318.	0.8	62
108	University of Michigan MHD results of the Geospace Global Circulation Model metrics challenge. Journal of Geophysical Research, 2002, 107, SMP 12-1.	3.3	61

#	Article	IF	CITATIONS
109	Identifying Solar Flare Precursors Using Time Series of SDO/HMI Images and SHARP Parameters. Space Weather, 2019, 17, 1404-1426.	1.3	61
110	Time-dependent dusty gasdynamical flow near cometary nuclei. Astrophysical Journal, 1985, 293, 328.	1.6	60
111	Validation of a synoptic solar wind model. Journal of Geophysical Research, 2008, 113, .	3.3	59
112	Position and structure of the comet Halley bow shock: Vega―1 and Vegaâ€⊋ measurements. Geophysical Research Letters, 1986, 13, 841-844.	1.5	58
113	Preshock region acceleration of implanted cometary H ⁺ and O ⁺ . Journal of Geophysical Research, 1988, 93, 35-47.	3.3	58
114	A New Field Line Advection Model for Solar Particle Acceleration. Astrophysical Journal, 2004, 616, L171-L174.	1.6	58
115	3D global multiâ€species Hallâ€MHD simulation of the Cassini T9 flyby. Geophysical Research Letters, 2007, 34, .	1.5	58
116	ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1180-1198.	1.6	58
117	Timeâ€dependent modeling of fieldâ€aligned currentâ€generated ion transients in the polar wind. Journal of Geophysical Research, 1989, 94, 359-369.	3.3	57
118	Dust-Gas Interrelations In Comets: Observations And Theory. Earth, Moon and Planets, 1997, 79, 275-306.	0.3	57
119	Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. Journal of Geophysical Research, 2003, 108, .	3.3	57
120	Global MHD simulations of Saturn's magnetosphere at the time of Cassini approach. Geophysical Research Letters, 2005, 32, .	1.5	57
121	A parallel explicit/implicit time stepping scheme on block-adaptive grids. Journal of Computational Physics, 2006, 217, 722-758.	1.9	57
122	Driving Saturn's magnetospheric periodicities from the upper atmosphere/ionosphere. Journal of Geophysical Research, 2012, 117, .	3.3	57
123	The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer. Icarus, 2020, 335, 113421.	1.1	57
124	Interaction of the Saturnian magnetosphere with Titan: Results of a three-dimensional MHD simulation. Journal of Geophysical Research, 1999, 104, 2451-2458.	3.3	56
125	Modeling solar zenith angle effects on the polar wind. Journal of Geophysical Research, 2012, 117, .	3.3	56
126	Plasma environment of a weak comet – Predictions for Comet 67P/Churyumov–Gerasimenko from multifluid-MHD and Hybrid models. Icarus, 2014, 242, 38-49.	1.1	56

#	Article	IF	CITATIONS
127	A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY. Astrophysical Journal, 2012, 745, 6.	1.6	55
128	Effects of thermospheric motions on the polar wind: A timeâ€dependent numerical study. Journal of Geophysical Research, 1987, 92, 4725-4729.	3.3	54
129	SIMULATIONS OF WINDS OF WEAK-LINED T TAURI STARS. II. THE EFFECTS OF A TILTED MAGNETOSPHERE AND PLANETARY INTERACTIONS. Astrophysical Journal, 2010, 720, 1262-1280.	1.6	54
130	Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. Monthly Notices of the Royal Astronomical Society, 0, , stw2413.	1.6	54
131	Observation of electron and ion fluxes in the vicinity of Mars with the HARP spectrometer. Nature, 1989, 341, 614-616.	13.7	53
132	A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange. Journal of Geophysical Research, 1998, 103, 23625-23638.	3.3	53
133	3D multi-fluid MHD studies of the solar wind interaction with Mars. Geophysical Research Letters, 1999, 26, 2689-2692.	1.5	53
134	Theory and Modeling for the Magnetospheric Multiscale Mission. Space Science Reviews, 2016, 199, 577-630.	3.7	53
135	D ₂ 0 and HDS in the coma of 67P/Churyumov–Gerasimenko. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160253.	1.6	53
136	On the possible source of the ionization in the nighttime Martian ionosphere: 1. Phobos 2 Harp Electron Spectrometer measurements. Journal of Geophysical Research, 1991, 96, 19307-19313.	3.3	52
137	Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2018, 4, eaar6297.	4.7	52
138	Understanding storm-time ring current development through data-model comparisons of a moderate storm. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	51
139	Simulating the environment around planet-hosting stars. Astronomy and Astrophysics, 2016, 594, A95.	2.1	51
140	The telegraph equation in charged particle transport. Astrophysical Journal, 1993, 403, 377.	1.6	50
141	MESSENGER Observations and Global Simulations of Highly Compressed Magnetosphere Events at Mercury. Journal of Geophysical Research: Space Physics, 2019, 124, 229-247.	0.8	49
142	Scaling the Ion Inertial Length and Its Implications for Modeling Reconnection in Global Simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 10,336.	0.8	48
143	Analysis of the 3-D shape of the terrestrial bow shock by interball/magion 4 observations. Advances in Space Research, 2001, 28, 857-862.	1.2	47
144	Magnetospheric and Plasma Science with Cassini-Huygens. Space Science Reviews, 2002, 104, 253-346.	3.7	47

#	Article	IF	CITATIONS
145	Probing the Edge of the Solar System: Formation of an Unstable Jet-Sheet. Astrophysical Journal, 2003, 591, L61-L65.	1.6	47
146	Waves on the dusk flank boundary layer during very northward interplanetary magnetic field conditions: Observations and simulation. Journal of Geophysical Research, 2007, 112, .	3.3	47
147	Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A22.	2.1	47
148	Transport of gyrationâ€dominated space plasmas of thermal origin: 1. Generalized transport equations. Journal of Geophysical Research, 1991, 96, 7759-7778.	3.3	46
149	Hot hydrogen in the exosphere of Venus. Nature, 1980, 283, 178-180.	13.7	45
150	Interstellar dust filtration at the heliospheric interface. Journal of Geophysical Research, 2000, 105, 10411-10417.	3.3	45
151	Polar wind outflow model: Saturn results. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	45
152	NUMERICAL SIMULATIONS OF CORONAL MASS EJECTION ON 2011 MARCH 7: ONE-TEMPERATURE AND TWO-TEMPERATURE MODEL COMPARISON. Astrophysical Journal, 2013, 773, 50.	1.6	45
153	Achievements and Challenges in the Science of Space Weather. Space Science Reviews, 2017, 212, 1137-1157.	3.7	45
154	NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS. Astrophysical Journal, 2012, 749, 29.	1.6	45
155	Charge exchange avalanche at the cometopause. Geophysical Research Letters, 1987, 14, 1174-1177.	1.5	44
156	Selfâ€consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 3503-3524.	0.8	44
157	Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1336-1345.	1.6	44
158	Saturn's Magnetospheric Configuration. , 2009, , 203-255.		44
159	The solar wind interaction with Mars: results of three-dimensional three-species MHD studies. Advances in Space Research, 2001, 27, 1837-1846.	1.2	43
160	Open-closed field line boundary position: A parametric study using an MHD model. Journal of Geophysical Research, 2004, 109, .	3.3	43
161	Ion composition and chemistry in the coma of Comet 1P/Halley—A comparison between Giotto's Ion Mass Spectrometer and our ion-chemical network. Icarus, 2009, 199, 505-519.	1.1	43
162	Periodic plasma escape from the massâ€loaded Kronian magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	43

T I Gombosi

#	Article	IF	CITATIONS
163	ROSINA/DFMS and IES observations of 67P: Ion-neutral chemistry in the coma of a weakly outgassing comet. Astronomy and Astrophysics, 2015, 583, A2.	2.1	43
164	Alfvén Profile in the Lower Corona: Implications for Shock Formation. Astrophysical Journal, 2008, 687, 1355-1362.	1.6	42
165	THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF MAGNETIZED WINDS OF SOLAR-LIKE STARS. Astrophysical Journal, 2009, 699, 441-452.	1.6	42
166	Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 2010, 28, 1589-1614.	0.6	42
167	A STEADY-STATE PICTURE OF SOLAR WIND ACCELERATION AND CHARGE STATE COMPOSITION DERIVED FROM A GLOBAL WAVE-DRIVEN MHD MODEL. Astrophysical Journal, 2015, 806, 55.	1.6	42
168	Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dependence. Astrophysical Journal, 2020, 895, 3.	1.6	42
169	Wind observations of the terrestrial bow shock: 3-D shape and motion. Earth, Planets and Space, 2001, 53, 1001-1009.	0.9	41
170	Monte Carlo modeling of neutral gas and dust in the coma of Comet 1P/Halley. Icarus, 2011, 213, 655-677.	1.1	41
171	Theoretical modeling for the stereo mission. Space Science Reviews, 2008, 136, 565-604.	3.7	40
172	Numerical simulation of the 12 May 1997 CME Event: The role of magnetic reconnection. Journal of Geophysical Research, 2010, 115, .	3.3	40
173	Influence of surface stressing on stellar coronae and winds. Monthly Notices of the Royal Astronomical Society, 2013, 431, 528-538.	1.6	40
174	A model of solar wind–magnetosphere–ionosphere coupling for due northward IMF. Planetary and Space Science, 2000, 48, 29-39.	0.9	39
175	BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT. Astrophysical Journal, 2009, 693, 1178-1187.	1.6	39
176	Solar wind absorption by Venus. Journal of Geophysical Research, 1980, 85, 7747-7753.	3.3	38
177	Global MHD modeling of the impact of a solar wind pressure change. Journal of Geophysical Research, 2002, 107, SMP 21-1.	3.3	38
178	Modeling the Sun-to-Earth propagation of a very fast CME. Advances in Space Research, 2006, 38, 253-262.	1.2	38
179	SIMULATIONS OF WINDS OF WEAK-LINED T TAURI STARS: THE MAGNETIC FIELD GEOMETRY AND THE INFLUENCE OF THE WIND ON GIANT PLANET MIGRATION. Astrophysical Journal, 2009, 703, 1734-1742.	1.6	38
180	Radiative effects in radiative shocks in shock tubes. High Energy Density Physics, 2011, 7, 130-140.	0.4	38

#	Article	IF	CITATIONS
181	A parallel solution-adaptive scheme for ideal magnetohydrodynamics. , 1999, , .		37
182	THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS. Astrophysical Journal, 2012, 756, 81.	1.6	37
183	CORONAL HEATING BY SURFACE ALFVÉN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND. Astrophysical Journal, 2012, 756, 155.	1.6	37
184	Nonâ€steadyâ€state transport of superthermal electrons in the plasmasphere. Geophysical Research Letters, 1993, 20, 2821-2824.	1.5	36
185	Adaptive blocks. , 1997, , .		36
186	Quantitative Analysis of H2O+Coma Images Using a Multiscale MHD Model with Detailed Ion Chemistry. Icarus, 1997, 130, 373-386.	1.1	36
187	Magnetic Effects at the Edge of the Solar System: MHD Instabilities, the de Laval Nozzle Effect, and an Extended Jet. Astrophysical Journal, 2004, 611, 575-586.	1.6	36
188	Internal reconnection for northward interplanetary magnetic field. Journal of Geophysical Research, 2005, 110, .	3.3	36
189	Fourâ€fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumovâ€Gerasimenko near perihelion. Journal of Geophysical Research: Space Physics, 2016, 121, 4247-4268.	0.8	36
190	Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astronomy and Astrophysics, 2019, 630, A31.	2.1	36
191	Simulating the environment around planet-hosting stars. Astronomy and Astrophysics, 2016, 588, A28.	2.1	36
192	Modeling the Solar Cycle Dependence of Quietâ€Time Ion Upwelling at High Geomagnetic Latitudes. Geophysical Research Letters, 1989, 16, 1141-1144.	1.5	35
193	On the processes in the terrestrial magnetosheath: 1. Scheme development. Journal of Geophysical Research, 1999, 104, 22345-22355.	3.3	35
194	Three-fluid Ohm's law. Journal of Geophysical Research, 2001, 106, 8149-8156.	3.3	35
195	Comparison of photometer and global MHD determination of the open-closed field line boundary. Journal of Geophysical Research, 2004, 109, .	3.3	35
196	Modeling the young Sun's solar wind and its interaction with Earth's paleomagnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	35
197	Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3697-3709.	1.6	35
198	Isotopic composition of CO ₂ in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS. Astronomy and Astrophysics, 2017, 605, A50.	2.1	35

#	Article	IF	CITATIONS
199	Planetary bow shocks: Gasdynamic analytic approach. Journal of Geophysical Research, 2003, 108, .	3.3	34
200	Three-dimensional MHD simulations of the magnetosphere of Uranus. Journal of Geophysical Research, 2004, 109, .	3.3	34
201	Confronting Observations and Modeling: The Role ofÂtheÂInterstellar Magnetic Field in Voyager 1 and 2 Asymmetries. Space Science Reviews, 2009, 143, 43-55.	3.7	34
202	A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids. Journal of Computational Physics, 2016, 305, 604-621.	1.9	34
203	THE CORONAL STRUCTURE OF AB DORADUS. Astrophysical Journal, 2010, 721, 80-89.	1.6	33
204	Multiscale MHD simulation of a coronal mass ejection and its interaction with the magnetosphere–ionosphere system. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1515-1525.	0.6	32
205	Anthropogenic Space Weather. Space Science Reviews, 2017, 212, 985-1039.	3.7	32
206	Realâ€īme SWMF at CCMC: Assessing the Dst Output From Continuous Operational Simulations. Space Weather, 2018, 16, 1583-1603.	1.3	32
207	What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 2021, 11, 42.	1.1	32
208	The effect of the hot oxygen corona on the interaction of the solar wind with Venus. Geophysical Research Letters, 1987, 14, 503-506.	1.5	31
209	On the processes in the terrestrial magnetosheath: 2. Case study. Journal of Geophysical Research, 1999, 104, 22357-22373.	3.3	31
210	A 3D global MHD simulation of Saturn's magnetosphere. Advances in Space Research, 2000, 26, 1681-1690.	1.2	31
211	Titan's magnetic wake: Atmospheric or magnetospheric interaction. Journal of Geophysical Research, 2000, 105, 10761-10770.	3.3	31
212	Planetary bow shocks: Asymptotic MHD Mach cones. Earth, Planets and Space, 2003, 55, 33-38.	0.9	31
213	Global MHD modeling of Mercury's magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus, 2008, 195, 1-15.	1.1	31
214	Venus mantleâ€Mars planetosphere: What are the similarities and differences?. Geophysical Research Letters, 1990, 17, 865-868.	1.5	30
215	Comparison of observed and calculated implanted ion distributions outside comet Halley's bow shock. Journal of Geophysical Research, 1991, 96, 9467-9477.	3.3	30
216	Rosetta Orbiter Spectrometer for Ion and Neutral Analysis—ROSINA. Advances in Space Research, 1998, 21, 1527-1535.	1.2	30

#	Article	IF	CITATIONS
217	Adaptive Mesh Refinement for Global Magnetohydrodynamic Simulation. Lecture Notes in Physics, 2003, , 247-274.	0.3	30
218	Integration of the radiation belt environment model into the space weather modeling framework. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1653-1663.	0.6	29
219	Pressure anisotropy in global magnetospheric simulations: A magnetohydrodynamics model. Journal of Geophysical Research, 2012, 117, .	3.3	29
220	COMET 1P/HALLEY MULTIFLUID MHD MODEL FOR THE <i>GIOTTO</i> FLY-BY. Astrophysical Journal, 2014, 781, 86.	1.6	29
221	HIGH-TIME RESOLUTION IN SITU INVESTIGATION OF MAJOR COMETARY VOLATILES AROUND 67P/C–G AT 3.1–2.3 au MEASURED WITH ROSINA-RTOF. Astrophysical Journal, 2016, 819, 126.	1.6	29
222	The heterogeneous coma of comet 67P/Churyumov-Gerasimenko as seen by ROSINA: H ₂ 0, CO ₂ , and CO from September 2014 to February 2016. Astronomy and Astrophysics, 2017, 600, A77.	2.1	29
223	A numerical study of the pitch-angle scattering of cosmic rays. Astrophysical Journal, 1982, 254, 398.	1.6	29
224	The role of charge exchange in the solar wind absorption by Venus. Geophysical Research Letters, 1981, 8, 1265-1268.	1.5	28
225	A time-dependent dusty gas dynamic model of axisymmetric cometary jets. Icarus, 1990, 84, 118-153.	1.1	28
226	MHD Simulation of Comets: The Plasma Environment of Comet Hale-Bopp. Earth, Moon and Planets, 1997, 79, 179-207.	0.3	28
227	On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby. Journal of Geophysical Research, 1999, 104, 19983-19992.	3.3	28
228	Ion chemistry in the coma of comet 67P near perihelion. Monthly Notices of the Royal Astronomical Society, 2016, 462, S67-S77.	1.6	28
229	Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation. Monthly Notices of the Royal Astronomical Society, 2017, 469, S427-S442.	1.6	28
230	Anisotropic ion heating and parallel O ⁺ acceleration in regions of rapid E × B convection. Geophysical Research Letters, 1992, 19, 2289-2292.	1.5	27
231	Predicting the time derivative of local magnetic perturbations. Journal of Geophysical Research: Space Physics, 2014, 119, 310-321.	0.8	27
232	Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening. Astrophysical Journal, 2017, 845, 98.	1.6	27
233	Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S695-S711.	1.6	27
234	Solar Flare Intensity Prediction With Machine Learning Models. Space Weather, 2020, 18, e2020SW002440.	1.3	27

#	Article	IF	CITATIONS
235	Pitch angle scattering of cometary ions into monospherical and bispherical distributions. Geophysical Research Letters, 1991, 18, 1063-1066.	1.5	26
236	A new axisymmetric MHD model of the interaction of the solar wind with Venus. Journal of Geophysical Research, 1996, 101, 4547-4556.	3.3	26
237	MHD simulations of quadrupolar paleomagnetospheres. Journal of Geophysical Research, 2004, 109, .	3.3	26
238	Magnetohydrodynamic simulation of an equatorial dipolar paleomagnetosphere. Journal of Geophysical Research, 2004, 109, .	3.3	26
239	TRANSPORT EQUATION FOR MHD TURBULENCE: APPLICATION TO PARTICLE ACCELERATION AT INTERPLANETARY SHOCKS. Astrophysical Journal, 2009, 696, 261-267.	1.6	26
240	Observation of charged nanograins at comet 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2015, 42, 6575-6581.	1.5	26
241	Evidence for depletion of heavy silicon isotopes at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 601, A123.	2.1	26
242	Studying Dawnâ€Ðusk Asymmetries of Mercury's Magnetotail Using MHDâ€EPIC Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 8954-8973.	0.8	26
243	NEWLY DISCOVERED GLOBAL TEMPERATURE STRUCTURES IN THE QUIET SUN AT SOLAR MINIMUM. Astrophysical Journal, 2012, 755, 86.	1.6	25
244	THE EFFECT OF MAGNETIC SPOTS ON STELLAR WINDS AND ANGULAR MOMENTUM LOSS. Astrophysical Journal, 2009, 699, 1501-1510.	1.6	24
245	EVOLUTION OF PILED-UP COMPRESSIONS IN MODELED CORONAL MASS EJECTION SHEATHS AND THE RESULTING SHEATH STRUCTURES. Astrophysical Journal, 2011, 729, 112.	1.6	24
246	Pressure anisotropy in global magnetospheric simulations: Coupling with ring current models. Journal of Geophysical Research: Space Physics, 2013, 118, 5639-5658.	0.8	24
247	IMPACT: Science goals and firsts with STEREO. Advances in Space Research, 2005, 36, 1534-1543.	1.2	23
248	A global model of cometary tail disconnection events triggered by solar wind magnetic variations. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	23
249	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	9.0	23
250	Classical and semirelativistic magnetohydrodynamics with anisotropic ion pressure. Journal of Computational Physics, 2012, 231, 3610-3622.	1.9	23
251	¹⁶ O/ ¹⁸ O ratio in water in the coma of comet 67P/Churyumov-Gerasimenko measured with the Rosetta/ROSINA double-focusing mass spectrometer. Astronomy and Astrophysics, 2019, 630, A29.	2.1	23
252	Predicting Solar Flares Using CNN and LSTM on Two Solar Cycles of Active Region Data. Astrophysical Journal, 2022, 931, 163.	1.6	23

#	Article	IF	CITATIONS
253	Kinetic simulation of plasma flows in the inner magnetosphere. Journal of Geophysical Research, 1993, 98, 19301-19313.	3.3	22
254	Comment on "Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity―by Joachim Raeder. Journal of Geophysical Research, 2000, 105, 13141-13147.	3.3	22
255	Origin of the interhemispheric potential mismatch of merging cells for interplanetary magnetic field <i>B</i> _{<i>Y</i>} â€dominated periods. Journal of Geophysical Research, 2007, 112, .	3.3	22
256	A Simulation of a Coronal Mass Ejection Propagation and Shock Evolution in the Lower Solar Corona. Astrophysical Journal, 2008, 680, 757-763.	1.6	22
257	On the origin of molecular oxygen in cometary comae. Nature Communications, 2018, 9, 2580.	5.8	22
258	A unified transport equation for both cosmic rays and thermal particles. Astrophysical Journal, 1993, 405, L79.	1.6	22
259	lo's magnetospheric interaction: an MHD model with day-night asymmetry. Planetary and Space Science, 2001, 49, 337-344.	0.9	21
260	Dynamic response of Earth's magnetosphere toByreversals. Journal of Geophysical Research, 2003, 108,	3.3	21
261	Saturn: Atmosphere, Ionosphere, and Magnetosphere. Science, 2010, 327, 1476-1479.	6.0	21
262	Negatively charged nano-grains at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A23.	2.1	21
263	Combined first―and secondâ€order Fermi acceleration in cometary environments. Journal of Geophysical Research, 1989, 94, 15011-15023.	3.3	20
264	A two dimensional shock capturing, hydrodynamic model of the Venus ionosphere. Geophysical Research Letters, 1991, 18, 801-804.	1.5	20
265	A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows. Space Science Reviews, 1999, 87, 193-198.	3.7	20
266	Interaction of Saturn's magnetosphere and its moons: 1. Interaction between corotating plasma and standard obstacles. Journal of Geophysical Research, 2010, 115, .	3.3	20
267	Perpendicular flow deviation in a magnetized counter-streaming plasma. Icarus, 2012, 218, 895-905.	1.1	20
268	CHO-Bearing Molecules in Comet 67P/Churyumov-Gerasimenko. ACS Earth and Space Chemistry, 2019, 3, 1854-1861.	1.2	20
269	Analysis of the ionosphereâ€plasmasphere transport of superthermal electrons, 1. Transport in the plasmasphere. Journal of Geophysical Research, 1992, 97, 16887-16895.	3.3	19
270	MHD simulation of the three-dimensional structure of the heliospheric current sheet. Astronomy and Astrophysics, 2001, 376, 288-291.	2.1	19

#	Article	IF	CITATIONS
271	Diffusive Shock Acceleration Theory Revisited. Astrophysical Journal, 2006, 642, L81-L84.	1.6	19
272	SURFACE ALFVÉN WAVE DAMPING IN A THREE-DIMENSIONAL SIMULATION OF THE SOLAR WIND. Astrophysical Journal, 2009, 703, 179-186.	1.6	19
273	STUDY OF THE 2007 APRIL 20 CME-COMET INTERACTION EVENT WITH AN MHD MODEL. Astrophysical Journal, 2009, 696, L56-L60.	1.6	19
274	Comparison of the open losed separatrix in a global magnetospheric simulation with observations: The role of the ring current. Journal of Geophysical Research, 2010, 115, .	3.3	19
275	Kelvinâ€Helmholtz instabilities at the magnetic cavity boundary of comet 67P/Churyumovâ€Gerasimenko. Journal of Geophysical Research, 2012, 117, .	3.3	19
276	Pickup ions in the unshocked solar wind at comet Halley. Journal of Geophysical Research, 1989, 94, 185-196.	3.3	18
277	Two-species, 3D, MHD simulation of Europa's interaction with Jupiter's magnetosphere. Geophysical Research Letters, 2000, 27, 1791-1794.	1.5	18
278	Simulation of SEP Acceleration and Transport at CME-driven Shocks. AIP Conference Proceedings, 2005, , .	0.3	18
279	Observational evidence of CMEs interacting in the inner heliosphere as inferred from MHD simulations. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 598-604.	0.6	18
280	A comparative study of plasma expansion events in the polar wind. Planetary and Space Science, 1988, 36, 753-764.	0.9	17
281	Diurnal variations on a plasmaspheric flux tube: Light ion flows and F region temperature enhancements. Geophysical Research Letters, 1991, 18, 813-816.	1.5	17
282	On the Effect of Electron Collisions in the Excitation of Cometary HCN. Astrophysical Journal, 2004, 613, 615-621.	1.6	17
283	Modeled Interaction of Comet 67P/Churyumov-Gerasimenko with the Solar Wind Inside 2 AU. Earth, Moon and Planets, 2015, 116, 141-157.	0.3	17
284	Eruptive event generator based on the Gibson‣ow magnetic configuration. Journal of Geophysical Research: Space Physics, 2017, 122, 7979-7984.	0.8	17
285	Threaded-field-line Model for the Low Solar Corona Powered by the Alfvén Wave Turbulence. Astrophysical Journal, 2021, 908, 172.	1.6	17
286	Cosmic-ray scattering in simulated interplanetary magnetic field fluctuations. Astrophysical Journal, 1980, 235, 1071.	1.6	17
287	Anisotropy of cosmic radiation in the Galaxy. Nature, 1975, 255, 687-689.	13.7	16
288	Chargeâ€exchange in the magnetosheaths of Venus and Mars: A comparison. Geophysical Research Letters, 1983, 10, 163-164.	1.5	16

#	Article	IF	CITATIONS
289	What is the source of observed annual variations in plasmaspheric density?. Journal of Geophysical Research, 1995, 100, 8013.	3.3	16
290	A 3-D global MHD model for the effect of neutral jets during the Deep Space 1 Comet 19P/Borrelly flyby. Icarus, 2008, 196, 249-257.	1.1	16
291	Sulphur isotope mass-independent fractionation observed in comet 67P/Churyumov–Gerasimenko by Rosetta/ROSINA. Monthly Notices of the Royal Astronomical Society, 2017, 469, S787-S803.	1.6	16
292	A unifying comparison of nearly scatter free transport models. Journal of Geophysical Research, 1994, 99, 19301.	3.3	15
293	Validation of a global 3D heliospheric model with observations for the May 12, 1997 CME event. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 583-592.	0.6	15
294	Determining CME parameters by fitting heliospheric observations: Numerical investigation of the accuracy of the methods. Advances in Space Research, 2011, 48, 292-299.	1.2	15
295	From Sun to Earth: Multiscale MHD Simulations of Space Weather. Geophysical Monograph Series, 0, , 169-176.	0.1	15
296	Simulating Solar Maximum Conditions Using the Alfvén Wave Solar Atmosphere Model (AWSoM). Astrophysical Journal, 2021, 923, 176.	1.6	15
297	The role of highâ€speed plasma flows in plasmaspheric refilling. Journal of Geophysical Research, 1990, 95, 10427-10440.	3.3	14
298	The directional dependence of magnetic fluctuations generated by cometary ion pickup. Journal of Geophysical Research, 1991, 96, 9479-9490.	3.3	14
299	Analytic description of the electron temperature behavior in the upper ionosphere and plasmasphere. Geophysical Research Letters, 1992, 19, 1915-1918.	1.5	14
300	SPECTRUM: Synthetic Spectral Calculations for Global Space Plasma Modeling. Astrophysical Journal, Supplement Series, 2019, 242, 1.	3.0	14
301	ROSINA ion zoo at Comet 67P. Astronomy and Astrophysics, 2020, 642, A27.	2.1	14
302	Time-dependent numerical modeling of dust halo formation at comets. Astrophysical Journal, 1986, 311, 491.	1.6	14
303	Effect of magnetospheric convection on thermal plasma in the inner magnetosphere. Journal of Geophysical Research, 1994, 99, 5923.	3.3	13
304	Two-stream modeling of plasmaspheric refilling. Journal of Geophysical Research, 1995, 100, 9519.	3.3	13
305	Three-dimensional MHD simulation of coronal mass ejections. Advances in Space Research, 2000, 26, 793-800.	1.2	13
306	On the space environment of Mercury. Advances in Space Research, 2004, 33, 1884-1889.	1.2	13

#	Article	IF	CITATIONS
307	Saturn's Variable Magnetosphere. Science, 2005, 307, 1224-1226.	6.0	13
308	Toward a Quantitative Model for Simulation and Forecast of Solar Energetic Particle Production during Gradual Events. I. Magnetohydrodynamic Background Coupled to the SEP Model. Astrophysical Journal, 2018, 864, 88.	1.6	13
309	A comparison between the two lobes of comet 67P/Churyumov–Gerasimenko based on D/H ratios in H2O measured with the Rosetta/ROSINA DFMS. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4734-4740.	1.6	13
310	Molecule-dependent oxygen isotopic ratios in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5855-5862.	1.6	13
311	Charge exchange in solar wind-cometary interactions. Astrophysical Journal, 1983, 268, 889.	1.6	13
312	Interpretable Machine Learning to Forecast SEP Events for Solar Cycle 23. Space Weather, 2022, 20, .	1.3	13
313	The Plasma Environment of Comets. Reviews of Geophysics, 1991, 29, 976-984.	9.0	12
314	Buildup of the ring current during periodic loadingâ€unloading cycles in the magnetotail driven by steady southward interplanetary magnetic field. Journal of Geophysical Research, 2007, 112, .	3.3	12
315	MAGNETIC STRUCTURE OF RAPIDLY ROTATING FK COMAE-TYPE CORONAE. Astrophysical Journal, 2010, 719, 299-306.	1.6	12
316	LEARNING FROM THE OUTER HELIOSPHERE: INTERPLANETARY CORONAL MASS EJECTION SHEATH FLOWS AND THE EJECTA ORIENTATION IN THE LOWER CORONA. Astrophysical Journal, 2011, 728, 41.	1.6	12
317	Hall effect in the coma of 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2835-2841.	1.6	12
318	Ponderomotive acceleration in the auroral region: A kinetic simulation. Journal of Geophysical Research, 1995, 100, 23901.	3.3	11
319	Polar cap size during 14–16 July 2000 (Bastille Day) solar coronal mass ejection event: MHD modeling and satellite imager observations. Journal of Geophysical Research, 2005, 110, .	3.3	11
320	Interaction of Saturn's magnetosphere and its moons: 2. Shape of the Enceladus plume. Journal of Geophysical Research, 2010, 115, .	3.3	11
321	Interaction of Saturn's magnetosphere and its moons: 3. Time variation of the Enceladus plume. Journal of Geophysical Research, 2010, 115, .	3.3	11
322	A NEW 3D MULTI-FLUID MODEL: A STUDY OF KINETIC EFFECTS AND VARIATIONS OF PHYSICAL CONDITIONS IN THE COMETARY COMA. Astrophysical Journal, 2016, 833, 160.	1.6	11
323	ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES. Astrophysical Journal, 2017, 835, 48.	1.6	11
324	CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL. Astrophysical Journal, 2017, 834, 123.	1.6	11

#	Article	IF	CITATIONS
325	A six-moment multi-fluid plasma model. Journal of Computational Physics, 2019, 387, 134-153.	1.9	11
326	New Findings From Explainable SYMâ€H Forecasting Using Gradient Boosting Machines. Space Weather, 2022, 20, .	1.3	11
327	Cometesimals in the inner Solar System. Nature, 1987, 330, 548-550.	13.7	10
328	The HARP plasma experiment on-board the Phobos 2 spacecraft: Preliminary results. Planetary and Space Science, 1991, 39, 139-145.	0.9	10
329	Pickup protons and water ions at comet Halley: Comparisons with Giotto observations. Journal of Geophysical Research, 1993, 98, 1311-1323.	3.3	10
330	The induced magnetosphere of comet Halley: 4. Comparison of in situ observations and numerical simulations. Journal of Geophysical Research, 1999, 104, 28309-28319.	3.3	10
331	High performance computer methods applied to predictive space weather simulations. IEEE Transactions on Plasma Science, 2000, 28, 1931-1937.	0.6	10
332	Title is missing!. Astrophysics and Space Science, 2000, 274, 407-421.	0.5	10
333	Reducing numerical diffusion in magnetospheric simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	10
334	Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumovâ€Gerasimenko. Journal of Geophysical Research: Space Physics, 2016, 121, 804-816.	0.8	10
335	Segmentation of SED by Boundary Flows Associated With Westward Drifting Partial Ring current. Geophysical Research Letters, 2019, 46, 7920-7928.	1.5	10
336	A PHYSICS-BASED SOFTWARE FRAMEWORK FOR SUN-EARTH CONNECTION MODELING. , 2005, , 383-397.		10
337	Validating the Space Weather Modeling Framework (SWMF) for applications in northern Europe. Journal of Space Weather and Space Climate, 2020, 10, 33.	1.1	10
338	The HARP electron and ion sensor on the phobos mission. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 290, 228-236.	0.7	9
339	Effect of multiple substorms on the buildup of the ring current. Journal of Geophysical Research, 2005, 110, .	3.3	9
340	A TVD principle and conservative TVD schemes for adaptive Cartesian grids. Journal of Computational Physics, 2006, 220, 1-5.	1.9	9
341	MHD simulations of current systems in planetary magnetospheres: Mercury and Saturn. Geophysical Monograph Series, 2000, , 363-370.	0.1	8
342	A model of the formation of the low-latitude boundary layer for northward IMF by reconnection: A summary and review. Geophysical Monograph Series, 2003, , 121-130.	0.1	8

#	Article	IF	CITATIONS
343	Downstream structure and evolution of a simulated CME-driven sheath in the solar corona. Astronomy and Astrophysics, 2011, 527, A46.	2.1	8
344	The capabilities of ROSINA/DFMS to measure argon isotopes at comet 67P/Churyumov–Gerasimenko. Planetary and Space Science, 2015, 105, 175-178.	0.9	8
345	Analysis of the dust jet imaged by <i>Rosetta</i> VIRTIS-M in the coma of comet 67P/Churyumov–Gerasimenko on 2015 April 12. Monthly Notices of the Royal Astronomical Society, 2016, 462, S370-S375.	1.6	8
346	Comparison of neutral outgassing of comet 67P/Churyumov-Gerasimenko inbound and outbound beyond 3 AU from ROSINA/DFMS. Astronomy and Astrophysics, 2019, 630, A30.	2.1	8
347	Axisymmetric modeling of cometary mass loading on an adaptively refined grid: Hydrodynamic results. Geophysical Monograph Series, 1994, , 237-246.	0.1	7
348	3D multiscale mass loaded MHD simulations of the solar wind interaction with Mars. Advances in Space Research, 2000, 26, 1571-1575.	1.2	7
349	Clobal MHD simulations for southward IMF: a pair of wings in the flanks. Advances in Space Research, 2001, 28, 1763-1771.	1.2	7
350	Fine structure of the diamagnetic cavity boundary in comet Halley. Journal of Geophysical Research, 2003, 108, .	3.3	7
351	Time-Dependent Numerical Simulation of Hot Ion Outflow from the Polar Ionosphere. Geophysical Monograph Series, 0, , 366-371.	0.1	7
352	On the distribution of pickup ions as observed by the Vega spacecraft at comet Halley. Advances in Space Research, 2000, 26, 1565-1568.	1.2	6
353	Magnetic field topology during July 14-16 2000 (Bastille Day) solar CME event. Geophysical Research Letters, 2002, 29, 37-1-37-4.	1.5	6
354	Direct effects of the IMF on the inner magnetosphere. Geophysical Monograph Series, 2005, , 127-139.	0.1	6
355	Enhancement of Photospheric Meridional Flow by Reconnection Processes. Astrophysical Journal, 2006, 645, 1537-1542.	1.6	6
356	Dipole tilt effects on the magnetosphereâ€ionosphere convection system during interplanetary magnetic field <i>B</i> _{<i>Y</i>} â€dominated periods: MHD modeling. Journal of Geophysical Research, 2010, 115, .	3.3	6
357	THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT). Astrophysical Journal, 2015, 809, 156.	1.6	6
358	Correcting peak deformation in Rosetta's ROSINA/DFMS mass spectrometer. International Journal of Mass Spectrometry, 2015, 393, 41-51.	0.7	6
359	A possible mechanism for the formation of magnetic field dropouts in the coma of 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S468-S475.	1.6	6
360	First in-situ detection of the cometary ammonium ion NH\$_4^{+}\$ (protonated ammonia NH) Tj ETQq0 0 0 rgBT	/Overlock 1.6	10 Tf 50 67 6

Society, 0, , stw3370.

#	Article	IF	CITATIONS
361	The interplanetary transport of solar cosmic rays. Astrophysical Journal, 1980, 241, L129.	1.6	6
362	Plasma diffusion into the wake of Venus. Geophysical Research Letters, 1979, 6, 349-352.	1.5	5
363	An analytic solution to the steadyâ€state double adiabatic equations. Geophysical Research Letters, 1991, 18, 1181-1184.	1.5	5
364	Thermodynamic effect of the ion sound instability in the ionosphere. Journal of Geophysical Research, 1994, 99, 5721.	3.3	5
365	Development and validation of solution-adaptive, parallel schemes for compressible plasmas. , 2001, , .		5
366	A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal, 2017, 850, 72.	1.6	5
367	Fast and Accurate Emulation of the SDO/HMI Stokes Inversion with Uncertainty Quantification. Astrophysical Journal, 2021, 911, 130.	1.6	5
368	SynthIA: A Synthetic Inversion Approximation for the Stokes Vector Fusing SDO and Hinode into a Virtual Observatory. Astrophysical Journal, Supplement Series, 2022, 259, 24.	3.0	5
369	Energy distribution of electrons with E < 800 eV in the areomagnetosphere. Planetary and Space Science, 1991, 39, 147-151.	0.9	4
370	Transport of Gyration-Dominated Space Plasmas of Thermal Origin 2: Numerical Solution. Journal of Computational Physics, 1993, 109, 16-29.	1.9	4
371	Plasma flow in the cometosheath of comet Halley. Advances in Space Research, 1997, 20, 275-278.	1.2	4
372	Parallel, Adaptive-Mesh-Refinement MHD for Global Space-Weather Simulations. AIP Conference Proceedings, 2003, , .	0.3	4
373	Parallel, AMR MHD for Global Space Weather Simulations. Lecture Notes in Computational Science and Engineering, 2005, , 473-490.	0.1	4
374	The inapplicability of spatial diffusion models for solar cosmic rays. Astrophysical Journal, 1981, 245, 328.	1.6	4
375	Plasma properties from the upstream region to the cometopause of comet P/Halley: Vega observations. , 1988, , 121-124.		4
376	Multiple scattering of light in a spherical cometary atmosphere with an axisymmetric dust jet. Icarus, 1992, 98, 179-194.	1.1	3
377	Magnetic field structure at the diamagnetic cavity boundary (Numerical simulations). Geophysical Research Letters, 2000, 27, 3817-3820.	1.5	3
378	Correction to "Interchange instability in the inner magnetosphere associated with geosynchronous particle flux decreases―by S. Sazykin, R. A. Wolf, R. W. Spiro, T. I. Gombosi, D. L. De Zeeuw, and M. F. Thomsen. Geophysical Research Letters, 2002, 29, 25-1-25-2.	1.5	3

#	Article	IF	CITATIONS
379	Upstream conditions at Mercury during the first MESSENGER flyby: Results from two independent solar wind models. Geophysical Research Letters, 2009, 36, .	1.5	3
380	Physicsâ€Based Analytical Model of the Planetary Bow Shock Position and Shape. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029104.	0.8	3
381	Analytical Description of the Near Planetary Bow Shock Based on Gas-Dynamic and Magneto-Gas–Dynamic Modeling for the Magnetic Field Parallel and Perpendicular to the Plasma Flow. Geomagnetism and Aeronomy, 2020, 60, 162-170.	0.2	3
382	Stream-aligned Magnetohydrodynamics for Solar Wind Simulations. Astrophysical Journal, 2022, 926, 102.	1.6	3
383	On the connection of interplanetary shock wave parameters and energetic storm particle events. Geophysical Research Letters, 1979, 6, 313-316.	1.5	2
384	VEGA: En route to Venus and comet Halley. Eos, 1985, 66, 33.	0.1	2
385	Modeling of dust halo formation following comet outbursts: Preliminary results. Geophysical Research Letters, 1986, 13, 299-301.	1.5	2
386	Multidimensional Dusty Gasdynamical Models of Inner Cometary Atmospheres. International Astronomical Union Colloquium, 1991, 116, 991-1001.	0.1	2
387	The directional dependence of cometary magnetic energy density in the quasi-parallel and quasi-perpendicular regimes. Advances in Space Research, 1991, 11, 79-82.	1.2	2
388	Interpretation of vega observations at comet halley applying three-dimensional MHD simulations. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 153-156.	0.2	2
389	Correction to "Interchange instability in the inner magnetosphere associated with geosynchronous particle flux decreasesâ€. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	2
390	Halloween Storm Simulations with the Space Weather Modeling Framework. , 2006, , .		2
391	Global asymmetry of the heliosphere. AIP Conference Proceedings, 2006, , .	0.3	2
392	Mass spectrometric characterization of the Rosetta Spacecraft contamination. Proceedings of SPIE, 2016, , .	0.8	2
393	Analysis of the complex solar particle event on April 29?30, 1973. Solar Physics, 1977, 54, 441-456.	1.0	1
394	Reply [to "Comparison of observed and calculated implanted ion distributions outside comet Halley's bow shock―by T. I. Gombosi, M. Neugebauer, A. D. Johnstone, A. J. Coates, and D. E. Huddleston]. Journal of Geophysical Research, 1993, 98, 3627-3629.	3.3	1
395	Non-potential electric field model of magnetosphere-ionosphere coupling. Geophysical Monograph Series, 2005, , 141-152.	0.1	1
396	Numerical Studies of the Solar Energetic Particle Transport and Acceleration. , 2005, , .		1

#	Article	IF	CITATIONS
397	Role of periodic loadingâ€unloading in the magnetotail versus interplanetary magnetic field <i>B</i> _{<i>z</i>} flipping in the ring current buildup. Journal of Geophysical Research, 2008, 113, .	3.3	1
398	Cometary Dusty Gas Dynamics. Geophysical Monograph Series, 2013, , 433-439.	0.1	1
399	Toward development of the energetic particle radiation nowcast model for assessing the radiation environment in the altitude range from that used by the commercial aviation in the troposphere to LEO, MEO, and GEO. , 2018, , .		1
400	Theoretical Modeling for the STEREO Mission. , 2008, , 565-604.		1
401	The Plasma Environment of Comet 67P/Churyumov–Gerasimenko Throughout the Rosetta Main Mission. , 2009, , 1-30.		1
402	Refractory elements in the gas phase for comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2022, 658, A87.	2.1	1
403	Cometary ion distributions near the pickup energy outside comet Halley's bow shock. Advances in Space Research, 1991, 11, 275-278.	1.2	0
404	Multiple Scattering of Light in a Spherical Cometary Atmosphere with an Axisymmetric Dust Jet. Icarus, 1993, 104, 167-184.	1.1	0
405	Plasma hydrodynamics in view of quasilinear effects. Planetary and Space Science, 1993, 41, 27-33.	0.9	0
406	A computational approach for modeling solar-wind physics. , 1997, , 516-521.		0
407	Preface [to Special Section on Thermal Plasma in the Solar System]. Journal of Geophysical Research, 1997, 102, 2025-2025.	3.3	Ο
408	Plasma flow past cometary and planetary satellite atmospheres. Geophysical Monograph Series, 2002, , 151-167.	0.1	0
409	Magnetic Effects Change Our View of the Heliosheath. AIP Conference Proceedings, 2004, , .	0.3	Ο
410	Numerical simulations of magnetized winds of solar-like stars. Proceedings of the International Astronomical Union, 2008, 4, 415-416.	0.0	0
411	Modelling of Plasmaspheric Flows with an Equatorial Heat Source for Electrons. Geophysical Monograph Series, 2013, , 157-165.	0.1	0
412	Position and Structure of the Comet Halley Bow Schock: Vega-1 and Vega-2 Measurements. Special Publications, 2013, , 841-844.	0.0	0
413	Interactions between exoplanets and the winds of young stars. EPJ Web of Conferences, 2014, 64, 04006.	0.1	0
414	Coupled MHD – Hybrid Simulations of Space Plasmas. Journal of Physics: Conference Series, 2020, 1623, 012008.	0.3	0

#	Article	IF	CITATIONS
415	Confronting Observations and Modeling: The Role ofÂtheÂInterstellar Magnetic Field in Voyager 1 and 2 Asymmetries. Space Sciences Series of ISSI, 2008, , 43-55.	0.0	Ο
416	Quasi-periodic features and the radial distribution of cometary ions in the cometary plasma region of comet P/Halley. , 1988, , 191-194.		0
417	Simulating Space Weather. , 2016, , 261-289.		Ο
418	Theory and Modeling for the Magnetospheric Multiscale Mission. , 2017, , 575-628.		0
419	Erratum - Charge Exchange in Solar Wind / Cometary Interactions. Astrophysical Journal, 1983, 274, 919.	1.6	0