
Nicole C Ammerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2088438/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model-Based Meta-Analysis of Relapsing Mouse Model Studies from the Critical Path to Tuberculosis Drug Regimens Initiative Database. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0179321.	3.2	5
2	An Adaptive Biosystems Engineering Approach towards Modeling the Soluble-to-Insoluble Phase Transition of Clofazimine. Pharmaceutics, 2022, 14, 17.	4.5	4
3	Quantitative Analysis of the Phase Transition Mechanism Underpinning the Systemic Self-Assembly of a Mechanopharmaceutical Device. Pharmaceutics, 2022, 14, 15.	4.5	4
4	Efficacy of Long-Acting Bedaquiline Regimens in a Mouse Model of Tuberculosis Preventive Therapy. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 570-579.	5.6	10
5	Differential <i>In Vitro</i> Activities of Individual Drugs and Bedaquiline-Rifabutin Combinations against Actively Multiplying and Nutrient-Starved Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	11
6	<i>In Vitro</i> Activity of Bedaquiline and Imipenem against Actively Growing, Nutrient-Starved, and Intracellular Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0154521.	3.2	4
7	Comparative Efficacy of Rifapentine Alone and in Combination with Isoniazid for Latent Tuberculosis Infection: a Translational Pharmacokinetic-Pharmacodynamic Modeling Study. Antimicrobial Agents and Chemotherapy, 2021, 65, e0170521.	3.2	5
8	New β-Lactamase Inhibitors Nacubactam and Zidebactam Improve the <i>In Vitro</i> Activity of β-Lactam Antibiotics against Mycobacterium abscessus Complex Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
9	Activity of a Long-Acting Injectable Bedaquiline Formulation in a Paucibacillary Mouse Model of Latent Tuberculosis Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	36
10	<i>In Vitro</i> Activity of New Tetracycline Analogs Omadacycline and Eravacycline against Drug-Resistant Clinical Isolates of <i>Mycobacterium abscessus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	84
11	Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
12	<i>In Vitro</i> Activity of the New β-Lactamase Inhibitors Relebactam and Vaborbactam in Combination with β-Lactams against Mycobacterium abscessus Complex Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	45
13	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	37
14	Shorter-course treatment for Mycobacterium ulcerans disease with high-dose rifamycins and clofazimine in a mouse model of Buruli ulcer. PLoS Neglected Tropical Diseases, 2018, 12, e0006728.	3.0	26
15	In vitro and in vivo activity of biapenem against drug-susceptible and rifampicin-resistant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2017, 72, 2320-2325.	3.0	30
16	Clofazimine has delayed antimicrobial activity against <i>Mycobacterium tuberculosis</i> both <i>in vitro</i> and <i>in vivo</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, 455-461.	3.0	44
17	Non-classical transpeptidases yield insight into new antibacterials. Nature Chemical Biology, 2017, 13, 54-61.	8.0	116
18	Clofazimine Contributes Sustained Antimicrobial Activity after Treatment Cessation in a Mouse Model of Tuberculosis Chemotherapy. Antimicrobial Agents and Chemotherapy, 2016, 60, 2864-2869.	3.2	28

NICOLE C AMMERMAN

#	Article	IF	CITATIONS
19	Cathepsin K Contributes to Cavitation and Collagen Turnover in Pulmonary Tuberculosis. Journal of Infectious Diseases, 2016, 213, 618-627.	4.0	27
20	Targeting DnaN for tuberculosis therapy using novel griselimycins. Science, 2015, 348, 1106-1112.	12.6	262
21	Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 869-874.	7.1	116
22	Characterization of Mouse Models of Mycobacterium avium Complex Infection and Evaluation of Drug Combinations. Antimicrobial Agents and Chemotherapy, 2015, 59, 2129-2135.	3.2	40
23	Pharmacokinetics and Pharmacodynamics of Clofazimine in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 3042-3051.	3.2	93
24	<i>Mycobacterium tuberculosis</i> dysregulates <scp>MMP</scp> / <scp>TIMP</scp> balance to drive rapid cavitation and unrestrained bacterial proliferation. Journal of Pathology, 2015, 235, 431-444.	4.5	86
25	Revisiting Anti-tuberculosis Activity of Pyrazinamide in Mice. Mycobacterial Diseases: Tuberculosis & Leprosy, 2014, 04, 145.	0.1	11
26	Dose-ranging activity of the newly registered antituberculosis drug bedaquiline (TMC207). Expert Review of Anti-Infective Therapy, 2013, 11, 649-651.	4.4	3
27	Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nature Communications, 2013, 4, 2907.	12.8	130
28	Assessment of Clofazimine Activity in a Second-Line Regimen for Tuberculosis in Mice. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 608-612.	5.6	114
29	Preliminary Structure–Activity Relationships and Biological Evaluation of Novel Antitubercular Indolecarboxamide Derivatives Against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains. Journal of Medicinal Chemistry, 2013, 56, 4093-4103.	6.4	118
30	Acceleration of Tuberculosis Treatment by Adjunctive Therapy with Verapamil as an Efflux Inhibitor. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 600-607.	5.6	149
31	Improving existing tools for Mycobacterium xenopi treatment: assessment of drug combinations and characterization of mouse models of infection and chemotherapy. Journal of Antimicrobial Chemotherapy, 2013, 68, 659-665.	3.0	25
32	Adjuvant Host-Directed Therapy with Types 3 and 5 but Not Type 4 Phosphodiesterase Inhibitors Shortens the Duration of Tuberculosis Treatment. Journal of Infectious Diseases, 2013, 208, 512-519.	4.0	46
33	Surface Proteome Analysis and Characterization of Surface Cell Antigen (Sca) or Autotransporter Family of Rickettsia typhi. PLoS Pathogens, 2012, 8, e1002856.	4.7	57
34	TolC-Dependent Secretion of an Ankyrin Repeat-Containing Protein of Rickettsia typhi. Journal of Bacteriology, 2012, 194, 4920-4932.	2.2	51
35	Modeling early bactericidal activity in murine tuberculosis provides insights into the activity of isoniazid and pyrazinamide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15001-15005.	7.1	33
36	Isoniazid resistance without a loss of fitness in Mycobacterium tuberculosis. Nature Communications, 2012, 3, 753.	12.8	40

NICOLE C AMMERMAN

#	Article	IF	CITATIONS
37	Rv2190c, an NlpC/P60 Family Protein, Is Required for Full Virulence of Mycobacterium tuberculosis. PLoS ONE, 2012, 7, e43429.	2.5	30
38	Successful Shortening of Tuberculosis Treatment Using Adjuvant Host-Directed Therapy with FDA-Approved Phosphodiesterase Inhibitors in the Mouse Model. PLoS ONE, 2012, 7, e30749.	2.5	61
39	Gene Expression of Mycobacterium tuberculosis Putative Transcription Factors whiB1-7 in Redox Environments. PLoS ONE, 2012, 7, e37516.	2.5	60
40	Functional Characterization of a Phospholipase A ₂ Homolog from <i>Rickettsia typhi</i> . Journal of Bacteriology, 2010, 192, 3294-3303.	2.2	55
41	A Typhus Group-Specific Protease Defies Reductive Evolution in Rickettsiae. Journal of Bacteriology, 2009, 191, 7609-7613.	2.2	17
42	Louse- and flea-borne rickettsioses: biological and genomic analyses. Veterinary Research, 2009, 40, 12.	3.0	52
43	An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved. PLoS ONE, 2009, 4, e4833.	2.5	89
44	Growth and Maintenance of Vero Cell Lines. Current Protocols in Microbiology, 2008, 11, Appendix 4E.	6.5	167
45	Characterization of Sec-Translocon-Dependent Extracytoplasmic Proteins of Rickettsia typhi. Journal of Bacteriology, 2008, 190, 6234-6242.	2.2	26
46	Laboratory Maintenance of <i>Rickettsia rickettsii</i> . Current Protocols in Microbiology, 2008, 11, Unit 3A.5.	6.5	73
47	Plasmids and Rickettsial Evolution: Insight from Rickettsia felis. PLoS ONE, 2007, 2, e266.	2.5	212
48	Spotted-Fever Group <i>Rickettsia</i> in <i>Dermacentor variabilis</i> , Maryland. Emerging Infectious Diseases, 2004, 10, 1478-1481.	4.3	65
49	Molecular Differentiation of Metastriate Tick Immatures. Vector-Borne and Zoonotic Diseases, 2004, 4, 334-342.	1.5	34