List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2087803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the <scp>ILAE</scp> Commission on Diagnostic Methods. Epilepsia, 2013, 54, 1315-1329.	5.1	816
2	Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain, 2018, 141, 391-408.	7.6	352
3	Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10154-10159.	7.1	201
4	Advances in MRI for 'cryptogenic' epilepsies. Nature Reviews Neurology, 2011, 7, 99-108.	10.1	197
5	Cortical thickness analysis in temporal lobe epilepsy. Neurology, 2010, 74, 1776-1784.	1.1	193
6	Imaging structural and functional brain networks in temporal lobe epilepsy. Frontiers in Human Neuroscience, 2013, 7, 624.	2.0	185
7	Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia, 2019, 60, 1054-1068.	5.1	184
8	Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain, 2008, 131, 3246-3255.	7.6	179
9	Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia, 2015, 56, 1669-1686.	5.1	167
10	Thalamo–cortical network pathology in idiopathic generalized epilepsy: Insights from MRI-based morphometric correlation analysis. NeuroImage, 2009, 46, 373-381.	4.2	157
11	Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Annals of Neurology, 2001, 49, 770-775.	5.3	156
12	Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83, 48-55.	1.1	148
13	Structural substrates for resting network disruption in temporal lobe epilepsy. Brain, 2012, 135, 2350-2357.	7.6	137
14	T2 Relaxometry Can Lateralize Mesial Temporal Lobe Epilepsy in Patients with Normal MRI. NeuroImage, 2000, 12, 739-746.	4.2	129
15	Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. NeuroImage, 2003, 19, 1748-1759.	4.2	125
16	Magnetic resonance imaging pattern learning in temporal lobe epilepsy: Classification and prognostics. Annals of Neurology, 2015, 77, 436-446.	5.3	120
17	A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy. Neurology, 2017, 89, 506-516.	1.1	118
18	The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Annals of Neurology, 2016, 80, 142-153.	5.3	116

#	Article	IF	CITATIONS
19	Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology, 2012, 79, 455-462.	1.1	111
20	Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study. Science Advances, 2020, 6, .	10.3	97
21	Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology, 2012, 78, 129-136.	1.1	95
22	The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain, 2016, 139, 2431-2440.	7.6	85
23	Neuroimaging and connectomics of drugâ€resistant epilepsy at multiple scales: From focal lesions to macroscale networks. Epilepsia, 2019, 60, 593-604.	5.1	82
24	The spectrum of structural and functional network alterations in malformations of cortical development. Brain, 2017, 140, 2133-2143.	7.6	80
25	Temporal lobe epilepsy. Neurology, 2019, 92, e2209-e2220.	1.1	80
26	Multimodal MRI profiling of focal cortical dysplasia type II. Neurology, 2017, 88, 734-742.	1.1	78
27	Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology, 2016, 86, 643-650.	1.1	75
28	Response to commentary on recommendations for the use of structural <scp>MRI</scp> in the care of patients with epilepsy: A consensus report from the <scp>ILAE</scp> Neuroimaging Task Force. Epilepsia, 2019, 60, 2143-2144.	5.1	74
29	Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset. Scientific Data, 2015, 2, 150059.	5.3	70
30	Computational Models of MRI Characteristics of Focal Cortical Dysplasia Improve Lesion Detection. NeuroImage, 2002, 17, 1755-1760.	4.2	67
31	Functional connectome contractions in temporal lobe epilepsy: Microstructural underpinnings and predictors of surgical outcome. Epilepsia, 2020, 61, 1221-1233.	5.1	65
32	Functional network alterations and their structural substrate in drug-resistant epilepsy. Frontiers in Neuroscience, 2014, 8, 411.	2.8	64
33	Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study. NeuroImage, 2018, 182, 294-303.	4.2	63
34	Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy. Annals of the New York Academy of Sciences, 2000, 911, 495-500.	3.8	61
35	In vivo <scp>MRI</scp> signatures of hippocampal subfield pathology in intractable epilepsy. Human Brain Mapping, 2016, 37, 1103-1119.	3.6	61
36	Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy. NeuroImage, 2004, 23, 318-324.	4.2	60

ANDREA BERNASCONI

#	Article	IF	CITATIONS
37	Focal cortical malformations in children with early infantile epilepsy and <i><scp>PCDH</scp>19</i> mutations: case report. Developmental Medicine and Child Neurology, 2018, 60, 100-105.	2.1	56
38	Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Research, 2018, 140, 29-38.	1.6	52
39	7T Epilepsy Task Force Consensus Recommendations on the Use of 7T MRI in Clinical Practice. Neurology, 2021, 96, 327-341.	1.1	52
40	Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains. Brain Connectivity, 2019, 9, 113-127.	1.7	50
41	Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology, 2019, 93, e1112-e1122.	1.1	50
42	In Vivo Profiling of Focal Cortical Dysplasia on High-resolution MRI with Computational Models. Epilepsia, 2006, 47, 134-142.	5.1	48
43	Connectome biomarkers of drugâ€ŧesistant epilepsy. Epilepsia, 2021, 62, 6-24.	5.1	48
44	Convergence of cortical types and functional motifs in the human mesiotemporal lobe. ELife, 2020, 9, .	6.0	46
45	Interictal Hippocampal Spiking Influences the Occurrence of Hippocampal Sleep Spindles. Sleep, 2015, 38, 1927-1933.	1.1	44
46	Subregional Mesiotemporal Network Topology Is Altered in Temporal Lobe Epilepsy. Cerebral Cortex, 2016, 26, 3237-3248.	2.9	40
47	Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia. Neurology, 2021, 97, e1571-e1582.	1.1	39
48	A connectome-based mechanistic model of focal cortical dysplasia. Brain, 2019, 142, 688-699.	7.6	38
49	Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings. Neurology, 2019, 93, e1272-e1280.	1.1	35
50	Surface-Based Texture and Morphological Analysis Detects Subtle Cortical Dysplasia. Lecture Notes in Computer Science, 2008, 11, 645-652.	1.3	34
51	Macroscale and microcircuit dissociation of focal and generalized human epilepsies. Communications Biology, 2020, 3, 244.	4.4	34
52	Targeting ageâ€related differences in brain and cognition with multimodal imaging and connectome topography profiling. Human Brain Mapping, 2019, 40, 5213-5230.	3.6	33
53	Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy. Human Brain Mapping, 2016, 37, 515-524.	3.6	30
54	MRI essentials in epileptology: a review from the ILAE Imaging Taskforce. Epileptic Disorders, 2020, 22, 421-437.	1.3	28

#	Article	IF	CITATIONS
55	Altered communication dynamics reflect cognitive deficits in temporal lobe epilepsy. Epilepsia, 2021, 62, 1022-1033.	5.1	28
56	A Surface Patch-Based Segmentation Method for Hippocampal Subfields. Lecture Notes in Computer Science, 2016, , 379-387.	1.3	28
57	Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain, 2021, 144, 2486-2498.	7.6	26
58	Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain, 2022, 145, 897-908.	7.6	26
59	Surface-based multi-template automated hippocampal segmentation: Application to temporal lobe epilepsy. Medical Image Analysis, 2012, 16, 1445-1455.	11.6	25
60	Atypical functional connectome hierarchy impacts cognition in temporal lobe epilepsy. Epilepsia, 2021, 62, 2589-2603.	5.1	25
61	Unveiling epileptogenic lesions: The contribution of image processing. Epilepsia, 2011, 52, 20-24.	5.1	24
62	A systemsâ€level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	22
63	Connectome-based models of the epileptogenic network: a step towards epileptomics?. Brain, 2017, 140, 2525-2527.	7.6	19
64	Topographic principles of cortical fluidâ€attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia, 2018, 59, 627-635.	5.1	19
65	Quantitative MR imaging of the neocortex. Neuroimaging Clinics of North America, 2004, 14, 425-436.	1.0	18
66	Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy. Brain, 2022, 145, 1285-1298.	7.6	18
67	Celiac Disease, Bilateral Occipital Calcifications and Intractable Epilepsy: Mechanisms of Seizure Origin. Epilepsia, 1998, 39, 300-306.	5.1	16
68	Accurate cortical tissue classification on <scp>MRI</scp> by modeling cortical folding patterns. Human Brain Mapping, 2015, 36, 3563-3574.	3.6	16
69	MRI-Based Machine Learning Prediction Framework to Lateralize Hippocampal Sclerosis in Patients With Temporal Lobe Epilepsy. Neurology, 2021, 97, e1583-e1593.	1.1	16
70	Functional Networks in Epilepsy Presurgical Evaluation. Neurosurgery Clinics of North America, 2020, 31, 395-405.	1.7	15
71	WONOEP appraisal: Network concept from an imaging perspective. Epilepsia, 2019, 60, 1293-1305.	5.1	14
72	Whole-brain multimodal MRI phenotyping of periventricular nodular heterotopia. Neurology, 2020, 95, e2418-e2426.	1.1	14

#	Article	IF	CITATIONS
73	EEG Background Delta Activity in Temporal Lobe Epilepsy: Correlation with Volumetric and Spectroscopic Imaging. Epilepsia, 1999, 40, 1580-1586.	5.1	13
74	Automated Detection of Epileptogenic Cortical Malformations Using Multimodal MRI. Lecture Notes in Computer Science, 2017, , 349-356.	1.3	12
75	Unsupervised machine learning reveals lesional variability in focal cortical dysplasia at mesoscopic scale. NeuroImage: Clinical, 2020, 28, 102438.	2.7	11
76	Eventâ€based modeling in temporal lobe epilepsy demonstrates progressive atrophy from crossâ€sectional data. Epilepsia, 2022, 63, 2081-2095.	5.1	11
77	Imaging the epileptic brain—time for new standards. Nature Reviews Neurology, 2014, 10, 133-134.	10.1	10
78	Magnetic resonance imaging in intractable epilepsy: focus on structural image analysis. Advances in Neurology, 2006, 97, 273-8.	0.8	9
79	Deep Convolutional Networks for Automated Detection of Epileptogenic Brain Malformations. Lecture Notes in Computer Science, 2018, , 490-497.	1.3	8
80	Multimodal computational neocortical anatomy in pediatric hippocampal sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1200-1210.	3.7	7
81	Imaging characteristics of temporopolar blurring in the context of hippocampal sclerosis. Epileptic Disorders, 2022, 24, 1-8.	1.3	7
82	A Structure–Function Substrate of Memory for Spatial Configurations in Medial and Lateral Temporal Cortices. Cerebral Cortex, 2021, 31, 3213-3225.	2.9	6
83	Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extraâ€ŧemporal partial epilepsy. Annals of Neurology, 2001, 49, 770-775.	5.3	6
84	ILAE Neuroimaging Task Force Highlight: harnessing optimized imaging protocols for drugâ€resistant childhood epilepsy. Epileptic Disorders, 2021, 23, 675-681.	1.3	6
85	Advanced MRI analysis methods for detection of focal cortical dysplasia. Epileptic Disorders, 2003, 5 Suppl 2, S81-4.	1.3	6
86	Structural Image Analysis in Epilepsy. Epilepsia, 2002, 43, 19-24.	5.1	4
87	Connectome-Based Pattern Learning Predicts Histology and Surgical Outcome of Epileptogenic Malformations of Cortical Development. Lecture Notes in Computer Science, 2017, , 390-397.	1.3	4
88	ILAE Neuroimaging Task Force highlight: Review MRI scans with semiology in mind. Epileptic Disorders, 2020, 22, 683-687.	1.3	4
89	Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling. Frontiers in Neuroinformatics, 2018, 12, 39.	2.5	3

90 Network Modeling of Epilepsy Using Structural and Functional MRI. , 2019, , 77-94.

3

#	Article	IF	CITATIONS
91	New interinstitutional, multimodal presurgical evaluation protocol associated with improved seizure freedom for poorly defined cases of focal epilepsy in children. Journal of Neurosurgery: Pediatrics, 2022, 29, 74-82.	1.3	3
92	Contributions of Imaging to Neuromodulatory Treatment of Drug-Refractory Epilepsy. Brain Sciences, 2020, 10, 700.	2.3	2
93	Brain Morphometry: Epilepsy. Neuromethods, 2018, , 301-321.	0.3	1
94	Predicting the Outcome of Surgical Interventions for Epilepsy Using Imaging Biomarkers. , 2019, , 169-180.		1
95	Computational Neuroimaging of Epilepsy. , 2019, , 55-67.		0
96	Tracking Epilepsy Disease Progression with Neuroimaging. , 2019, , 217-228.		0
97	Hyperekplexia: genetics and culture-bound stimulus-induced disorders. , 2001, , 151-164.		0