Maria Dolores Molina Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085575/publications.pdf

Version: 2024-02-01

1040056 940533 16 571 9 16 citations h-index g-index papers 18 18 18 493 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Developmental Biology, 2007, 311, 79-94.	2.0	147
2	Planarian regeneration: achievements and future directions after 20 years of research. International Journal of Developmental Biology, 2009, 53, 1317-1327.	0.6	99
3	Noggin and Noggin-Like Genes Control Dorsoventral Axis Regeneration in Planarians. Current Biology, 2011, 21, 300-305.	3.9	93
4	Nodal: master and commander of the dorsal–ventral and left–right axes in the sea urchin embryo. Current Opinion in Genetics and Development, 2013, 23, 445-453.	3.3	62
5	Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expression Patterns, 2009, 9, 246-253.	0.8	38
6	The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo. PLoS Biology, 2015, 13, e1002247.	5.6	31
7	Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration. International Journal of Developmental Biology, 2012, 56, 155-163.	0.6	23
8	Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules, 2021, 11, 1532.	4.0	15
9	CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Developmental Biology, 2021, 476, 53-67.	2.0	14
10	MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genetics, 2018, 14, e1007621.	3.5	10
11	Organizing the DV axis during planarian regeneration. Communicative and Integrative Biology, 2011, 4, 498-500.	1.4	10
12	Maternal factors regulating symmetry breaking and dorsalâ€"ventral axis formation in the sea urchin embryo. Current Topics in Developmental Biology, 2020, 140, 283-316.	2.2	8
13	p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation. Development (Cambridge), 2017, 144, 2270-2281.	2.5	6
14	FoxK1 is Required for Ectodermal Cell Differentiation During Planarian Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 808045.	3.7	6
15	Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods in Cell Biology, 2019, 151, 239-282.	1.1	4
16	Deciphering and modelling the TGF- \hat{l}^2 signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo. Development (Cambridge), 2020, 148, .	2.5	4