
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Plasmon Enhanced Upconversion Fluorescence in Short-Wave Infrared for In Vivo Imaging of Ovarian Cancer. ACS Nano, 2022, 16, 12930-12940.	14.6	3
2	Phage Particles of Controlled Length and Genome for <i>In Vivo</i> Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS Nano, 2022, 16, 11676-11691.	14.6	19
3	Surface Plasmonâ€Enhanced Shortâ€Wave Infrared Fluorescence for Detecting Subâ€Millimeterâ€Sized Tumors. Advanced Materials, 2021, 33, e2006057.	21.0	23
4	Near-infrared emitting graphene quantum dots synthesized from reduced graphene oxide for in vitro/in vivo/ex vivo bioimaging applications. 2D Materials, 2021, 8, 035013.	4.4	31
5	Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnO <i>_x</i> Cathode Design. Advanced Functional Materials, 2021, 31, 2010867.	14.9	3
6	Graphene, Carbon Nanotube and Plasmonic Nanosensors for Detection of Viral Pathogens: Opportunities for Rapid Testing in Pandemics like COVID-19. Frontiers in Nanotechnology, 2021, 3, .	4.8	17
7	Structural ceramic batteries using an earth-abundant inorganic waterglass binder. Nature Communications, 2021, 12, 6494.	12.8	14
8	A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Science Immunology, 2021, 6, eabf1152.	11.9	63
9	Rareâ€Earth Metal Ions Doped Graphene Quantum Dots for Nearâ€IR In Vitro/In Vivo/Ex Vivo Imaging Applications. Advanced Optical Materials, 2020, 8, 2000897.	7.3	37
10	Simulating selective binding of a biological template to a nanoscale architecture: a core concept of a clamp-based binding-pocket-favored N-terminal-domain assembly. Nanoscale, 2020, 12, 24214-24227.	5.6	18
11	Using yeast to sustainably remediate and extract heavy metals from waste waters. Nature Sustainability, 2020, 3, 303-311.	23.7	75
12	Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections. , 2020, , 231-277.		5
13	Thermally robust solvent-free biofluids of M13 bacteriophage engineered for high compatibility with anhydrous ionic liquids. Chemical Communications, 2019, 55, 10752-10755.	4.1	7
14	Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light. Nature Communications, 2019, 10, 2874.	12.8	63
15	Virusâ€Templated Nickel Phosphide Nanofoams as Additiveâ€Free, Thinâ€Film Liâ€Ion Microbattery Anodes. Small, 2019, 15, e1903166.	10.0	31
16	Designing yeast as plant-like hyperaccumulators for heavy metals. Nature Communications, 2019, 10, 5080.	12.8	46
17	Highly adjustable 3D nano-architectures and chemistries <i>via</i> assembled 1D biological templates. Nanoscale, 2019, 11, 1091-1102.	5.6	19
18	M13 Virusâ€Based Framework for High Fluorescence Enhancement, Small, 2019, 15, e1901233,	10.0	30

#	Article	IF	CITATIONS
19	Real-Time Single-Walled Carbon Nanotube-Based Fluorescence Imaging Improves Survival after Debulking Surgery in an Ovarian Cancer Model. ACS Nano, 2019, 13, 5356-5365.	14.6	70
20	Deep-tissue optical imaging of near cellular-sized features. Scientific Reports, 2019, 9, 3873.	3.3	57
21	Virus-templated Pt–Ni(OH)2 nanonetworks for enhanced electrocatalytic reduction of water. Nano Energy, 2019, 58, 167-174.	16.0	46
22	Biological-Templating of a Segregating Binary Alloy for Nanowire-Like Phase-Change Materials and Memory. ACS Applied Nano Materials, 2018, 1, 6556-6562.	5.0	24
23	Biotemplated Zinc Sulfide Nanofibers as Anode Materials for Sodium-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 5631-5639.	5.0	20
24	DNA Origami and C-Quadruplex Hybrid Complexes Induce Size Control of Single-Walled Carbon Nanotubes <i>via</i> Biological Activation. ACS Nano, 2018, 12, 7986-7995.	14.6	26
25	Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering. ACS Nano, 2017, 11, 1548-1558.	14.6	52
26	Early tumor detection afforded by inÂvivo imaging of near-infrared II fluorescence. Biomaterials, 2017, 134, 202-215.	11.4	100
27	Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Science Advances, 2017, 3, e1601984.	10.3	170
28	Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy and Environmental Science, 2017, 10, 236-246.	30.8	230
29	M13 Virus Aerogels as a Scaffold for Functional Inorganic Materials. Advanced Functional Materials, 2017, 27, 1603203.	14.9	37
30	A bio-facilitated synthetic route for nano-structured complex electrode materials. Green Chemistry, 2016, 18, 2619-2624.	9.0	16
31	Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5179-5184.	7.1	166
32	New insights into the thermal reduction of graphene oxide: Impact of oxygen clustering. Carbon, 2016, 100, 90-98.	10.3	94
33	Enhanced energy transport in genetically engineered excitonic networks. Nature Materials, 2016, 15, 211-216.	27.5	82
34	Real-time single-walled nanotube (SWNT)-based imaging system to improve tumor detection and survival in ovarian cancer preclinical model Journal of Clinical Oncology, 2016, 34, 5530-5530.	1.6	1
35	Graphene Oxide Nanosheets Modified with Singleâ€Domain Antibodies for Rapid and Efficient Capture of Cells. Chemistry - A European Journal, 2015, 21, 17178-17183.	3.3	22
36	Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation. Journal of Physical Chemistry C, 2015, , 150610114441003.	3.1	14

#	Article	IF	CITATIONS
37	M13 Virus-Enabled Synthesis of Titanium Dioxide Nanowires for Tunable Mesoporous Semiconducting Networks. Chemistry of Materials, 2015, 27, 1531-1540.	6.7	44
38	Biotemplated Silica and Silicon Materials as Building Blocks for Micro- to Nanostructures. Chemistry of Materials, 2015, 27, 5361-5370.	6.7	14
39	Carbon nanotube–polyaniline core–shell nanostructured hydrogel for electrochemical energy storage. RSC Advances, 2015, 5, 37970-37977.	3.6	28
40	Improving the Capacity of Sodium Ion Battery Using a Virus-Templated Nanostructured Composite Cathode. Nano Letters, 2015, 15, 2917-2921.	9.1	70
41	Nanoporous Networks: Assembly of a Bacteriophage-Based Template for the Organization of Materials into Nanoporous Networks (Adv. Mater. 21/2014). Advanced Materials, 2014, 26, 3568-3568.	21.0	0
42	Assembly of a Bacteriophageâ€Based Template for the Organization of Materials into Nanoporous Networks. Advanced Materials, 2014, 26, 3398-3404.	21.0	63
43	Virus-templated visible spectrum active perovskite photocatalyst. Catalysis Communications, 2014, 44, 68-72.	3.3	27
44	Assembly of Viral Hydrogels for Threeâ€Dimensional Conducting Nanocomposites. Advanced Materials, 2014, 26, 5101-5107.	21.0	49
45	Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chemistry, 2014, 6, 151-158.	13.6	326
46	Carbon nanotubes as in vivo bacterial probes. Nature Communications, 2014, 5, 4918.	12.8	108
47	M13 Virus-Directed Synthesis of Nanostructured Metal Oxides for Lithium–Oxygen Batteries. Nano Letters, 2014, 14, 4837-4845.	9.1	112
48	Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13948-13953.	7.1	221
49	M13 Virus based detection of bacterial infections in living hosts. Journal of Biophotonics, 2014, 7, 617-623.	2.3	22
50	Versatile Three-Dimensional Virus-Based Template for Dye-Sensitized Solar Cells with Improved Electron Transport and Light Harvesting. ACS Nano, 2013, 7, 6563-6574.	14.6	84
51	Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nature Communications, 2013, 4, 2756.	12.8	157
52	Engineered yeast for enhanced CO2 mineralization. Energy and Environmental Science, 2013, 6, 660.	30.8	43
53	Layer-by-layer assembled porous photoanodes for efficient electron collection in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 2217-2224.	10.3	36
54	Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures. ACS Synthetic Biology, 2013, 2, 490-496.	3.8	45

ANGELA M BELCHER

#	Article	IF	CITATIONS
55	Refactored M13 Bacteriophage as a Platform for Tumor Cell Imaging and Drug Delivery. ACS Synthetic Biology, 2012, 1, 576-582.	3.8	89
56	Virus-templated iridium oxide–gold hybrid nanowires for electrochromic application. Nanoscale, 2012, 4, 3405.	5.6	49
57	M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nature Nanotechnology, 2012, 7, 677-682.	31.5	261
58	M13 Bacteriophage Display Framework That Allows Sortase-Mediated Modification of Surface-Accessible Phage Proteins. Bioconjugate Chemistry, 2012, 23, 1478-1487.	3.6	91
59	Virus-templated Au and Au–Pt core–shell nanowires and their electrocatalytic activities for fuel cell applications. Energy and Environmental Science, 2012, 5, 8328.	30.8	119
60	M13 Phage-Functionalized Single-Walled Carbon Nanotubes As Nanoprobes for Second Near-Infrared Window Fluorescence Imaging of Targeted Tumors. Nano Letters, 2012, 12, 1176-1183.	9.1	256
61	Graphene Sheets Stabilized on Genetically Engineered M13 Viral Templates as Conducting Frameworks for Hybrid Energyâ€Storage Materials. Small, 2012, 8, 1006-1011.	10.0	57
62	Biotemplated Synthesis of Perovskite Nanomaterials for Solar Energy Conversion. Advanced Materials, 2012, 24, 2885-2889.	21.0	109
63	Nanostructure design of amorphous FePO4facilitated by a virus for 3 V lithium ion battery cathodes. Journal of Materials Chemistry, 2011, 21, 1033-1039.	6.7	72
64	Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotechnology, 2011, 6, 377-384.	31.5	368
65	Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure. ACS Nano, 2011, 5, 7108-7116.	14.6	386
66	Imaging Bacterial Cell Death Induced by Antimicrobial Peptides in Real Time Using High Speed AFM. Microscopy and Microanalysis, 2010, 16, 466-467.	0.4	7
67	Production of Hydrogen Using Nanocrystalline Protein-Templated Catalysts on M13 Phage. ACS Nano, 2010, 4, 3227-3235.	14.6	54
68	Genetically Engineered Phage Fibers and Coatings for Antibacterial Applications. Advanced Functional Materials, 2010, 20, 209-214.	14.9	24
69	Antibacterial Coatings: Genetically Engineered Phage Fibers and Coatings for Antibacterial Applications (Adv. Funct. Mater. 2/2010). Advanced Functional Materials, 2010, 20, NA-NA.	14.9	0
70	Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotechnology, 2010, 5, 340-344.	31.5	221
71	Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes. Nano Letters, 2010, 10, 2433-2440.	9.1	121
72	Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems. , 2010, , .		1

#	Article	IF	CITATIONS
73	Ambient pressure, low-temperature synthesis and characterization of colloidal InN nanocrystals. Journal of Materials Chemistry, 2010, 20, 1435.	6.7	35
74	Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 2009, 324, 1051-1055.	12.6	688
75	Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds. ACS Nano, 2008, 2, 1480-1486.	14.6	139
76	Stamped microbattery electrodes based on self-assembled M13 viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17227-17231.	7.1	144
77	Controlling Surface Mobility in Interdiffusing Polyelectrolyte Multilayers. ACS Nano, 2008, 2, 561-571.	14.6	78
78	Solvent-Assisted Patterning of Polyelectrolyte Multilayers and Selective Deposition of Virus Assemblies. Nano Letters, 2008, 8, 1081-1089.	9.1	66
79	Single M13 bacteriophage tethering and stretching. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4892-4897.	7.1	82
80	Imaging Cellular and Viral Materials with Small Cantilevers Developed for High Speed Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2007, 1025, 1.	0.1	0
81	Peptide tags for enhanced cellular and protein adhesion to single-crystalline sapphire. Biotechnology and Bioengineering, 2007, 97, 1009-1020.	3.3	59
82	Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science, 2006, 312, 885-888.	12.6	1,756
83	Probing the interface between biomolecules and inorganic materials using yeast surface display and genetic engineering. Acta Biomaterialia, 2005, 1, 145-154.	8.3	60
84	Design Criteria for Engineering Inorganic Material- Specific Peptides. Langmuir, 2005, 21, 6929-6933.	3.5	198
85	Programmable Assembly of Nanoarchitectures Using Genetically Engineered Viruses. Nano Letters, 2005, 5, 1429-1434.	9.1	361
86	Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science, 2004, 303, 213-217.	12.6	946
87	Molecular orientation of a ZnS-nanocrystal-modified M13 virus on a silicon substrate. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 629-635.	2.1	6
88	Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chemistry and Biology, 2004, 11, 1553-1559.	6.0	415
89	Biological Routes to Metal Alloy Ferromagnetic Nanostructures. Nano Letters, 2004, 4, 1127-1132.	9.1	212
90	Genetically Driven Assembly of Nanorings Based on the M13 Virus. Nano Letters, 2004, 4, 23-27.	9.1	108

#	ARTICLE	IF	CITATIONS
91	Viruses as vehicles for growth, organization and assembly of materials11The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh Acta Materialia, 2003, 51, 5867-5880.	7.9	295
92	Chiral Smectic C Structures of Virus-Based Filmsâ€. Langmuir, 2003, 19, 1592-1598.	3.5	82
93	Synthesis and organization of nanoscale II–VI semiconductor materials using evolved peptide specificity and viral capsid assembly. Journal of Materials Chemistry, 2003, 13, 2414-2421.	6.7	174
94	Spectroscopy of individual silicon nanowires. Applied Physics Letters, 2003, 82, 2616-2618.	3.3	74
95	Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6946-6951.	7.1	468
96	Structural and Microstructural Characterization of the Growth Lines and Prismatic Microarchitecture in Red Abalone Shell and the Microstructures of Abalone "Flat Pearls― Chemistry of Materials, 2002, 14, 3106-3117.	6.7	75
97	Emulating biology: Building nanostructures from the bottom up. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6451-6455.	7.1	398
98	Ordering of Quantum Dots Using Genetically Engineered Viruses. Science, 2002, 296, 892-895.	12.6	975
99	Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000, 405, 665-668.	27.8	1,252
100	Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 1999, 399, 761-763.	27.8	1,153
101	Borrowing Ideas from Nature: Peptide Specific Binding to Gallium Arsenide. Materials Research Society Symposia Proceedings, 1999, 599, 189.	0.1	1
102	Forging the Frontiers of Image-Guided Neurosurgery—The Emerging Uses of Theranostics in Neurosurgical Oncology. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	0