John H Werren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085289/publications.pdf

Version: 2024-02-01

157 papers 21,397 citations

14655 66 h-index 139 g-index

176 all docs

 $\begin{array}{c} 176 \\ \\ \text{docs citations} \end{array}$

176 times ranked

12284 citing authors

#	Article	IF	CITATIONS
1	Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 2008, 6, 741-751.	28.6	2,305
2	BIOLOGY OF <i>WOLBACHIA</i> . Annual Review of Entomology, 1997, 42, 587-609.	11.8	1,410
3	How many species are infected with Wolbachia? – a statistical analysis of current data. FEMS Microbiology Letters, 2008, 281, 215-220.	1.8	1,071
4	Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society B: Biological Sciences, 1995, 261, 55-63.	2.6	782
5	Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 2006, 72, 7098-7110.	3.1	730
6	<i>Wolbachia</i> infection frequencies in insects: evidence of a global equilibrium?. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1277-1285.	2.6	699
7	Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes. Science, 2007, 317, 1753-1756.	12.6	693
8	Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature, 1990, 346, 558-560.	27.8	559
9	Molecular identification of microorganisms associated with parthenogenesis. Nature, 1993, 361, 66-68.	27.8	484
10	Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature, 2001, 409, 707-710.	27.8	392
11	The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics, 2001, 2, 597-606.	16.3	355
12	Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10863-10870.	7.1	353
13	Male–killing <i>>Wolbachia</i> i>in two species of insect. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 735-740.	2.6	343
14	The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biology, 2017, 15, 62.	3.8	286
15	Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Molecular Biology, 1994, 2, 225-237.	2.0	282
16	Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts. MBio, 2016, 7, e02099.	4.1	260
17	Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). Journal of Bacteriology, 1994, 176, 388-394.	2.2	256
18	Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biology, 2016, 17, 227.	8.8	244

#	Article	IF	Citations
19	Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis Genetics, 1993, 135, 565-574.	2.9	237
20	Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Research, 2006, 16, 1334-1338.	5. 5	233
21	SEX DETERMINATION, SEX RATIOS, AND GENETIC CONFLICT. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 233-261.	6.7	231
22	Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology (United Kingdom), 2005, 151, 4015-4022.	1.8	216
23	MODES OF ACQUISITION OF <i>WOLBACHIA</i> : HORIZONTAL TRANSFER, HYBRID INTROGRESSION, AND CODIVERGENCE IN THE <i>NASONIA</i> SPECIES COMPLEX. Evolution; International Journal of Organic Evolution, 2009, 63, 165-183.	2.3	215
24	Recombination in Wolbachia. Current Biology, 2001, 11, 431-435.	3.9	212
25	Rapidly Evolving Mitochondrial Genome and Directional Selection in Mitochondrial Genes in the Parasitic Wasp Nasonia (Hymenoptera: Pteromalidae). Molecular Biology and Evolution, 2008, 25, 2167-2180.	8.9	210
26	Widespread Recombination Throughout Wolbachia Genomes. Molecular Biology and Evolution, 2006, 23, 437-449.	8.9	209
27	Male-killing bacteria in a parasitic wasp. Science, 1986, 231, 990-992.	12.6	202
28	Single and Double Infections with Wolbachia in the Parasitic Wasp <i>Nasonia vitripennis</i> Effects on Compatibility. Genetics, 1996, 143, 961-972.	2.9	197
29	Selfish genetic elements. Trends in Ecology and Evolution, 1988, 3, 297-302.	8.7	189
30	A "Selfish" B Chromosome That Enhances Its Transmission by Eliminating the Paternal Genome. Science, 1988, 240, 512-514.	12.6	187
31	Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nature Communications, 2016, 7, 10165.	12.8	184
32	Insights into the venom composition of the ectoparasitoid wasp <i>Nasonia vitripennis</i> from bioinformatic and proteomic studies. Insect Molecular Biology, 2010, 19, 11-26.	2.0	183
33	HYBRID BREAKDOWN BETWEEN TWO HAPLODIPLOID SPECIES: THE ROLE OF NUCLEAR AND CYTOPLASMIC GENES. Evolution; International Journal of Organic Evolution, 1995, 49, 705-717.	2.3	177
34	Mosaic Nature of the Wolbachia Surface Protein. Journal of Bacteriology, 2005, 187, 5406-5418.	2.2	176
35	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
36	Induction of paternal genome loss by the paternalâ€sexâ€ratio chromosome and cytoplasmic incompatibility bacteria (<i>>Wolbachia</i>): A comparative study of early embryonic events. Molecular Reproduction and Development, 1995, 40, 408-418.	2.0	172

#	Article	IF	Citations
37	A Massive Expansion of Effector Genes Underlies Gall-Formation in the Wheat Pest Mayetiola destructor. Current Biology, 2015, 25, 613-620.	3.9	171
38	Function and Evolution of DNA Methylation in Nasonia vitripennis. PLoS Genetics, 2013, 9, e1003872.	3.5	162
39	Taxonomic status of the intracellular bacterium Wolbachia pipientis. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 654-657.	1.7	157
40	Biosystematics of Nasonia (Hymenoptera: Pteromalidae): Two New Species Reared from Birds' Nests in North America. Annals of the Entomological Society of America, 1990, 83, 352-370.	2.5	156
41	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
42	Revisiting Wolbachia Supergroup Typing Based on WSP: Spurious Lineages and Discordance with MLST. Current Microbiology, 2007, 55, 81-87.	2.2	150
43	Gene content evolution in the arthropods. Genome Biology, 2020, 21, 15.	8.8	150
44	The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biology, 2016, 17, 192.	8.8	130
45	Genetics of Sex Determination and the Improvement of Biological Control Using Parasitoids. Environmental Entomology, 1992, 21, 427-435.	1.4	128
46	The Parasitoid Wasp <i>Nasonia:</i> An Emerging Model System with Haploid Male Genetics. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo134.	0.3	120
47	Rickettsia associated with male-killing in a buprestid beetle. Heredity, 2001, 86, 497-505.	2.6	116
48	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 2019, 20, 64.	8.8	114
49	Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Molecular Biology, 2000, 9, 661-673.	2.0	113
50	An extrachromosomal factor causing loss of paternal chromosomes. Nature, 1987, 327, 75-76.	27.8	107
51	The Evolution of Venom by Co-option of Single-Copy Genes. Current Biology, 2017, 27, 2007-2013.e8.	3.9	99
52	INFLUENCE OF ANTIBIOTIC TREATMENT AND WOLBACHIA CURING ON SEXUAL ISOLATION AMONG DROSOPHILA MELANOGASTER CAGE POPULATIONS. Evolution; International Journal of Organic Evolution, 2006, 60, 87-96.	2.3	98
53	Microbes Associated with Parthenogenesis in Wasps of the Genus Trichogramma. Journal of Invertebrate Pathology, 1993, 61, 6-9.	3.2	96
54	Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes. Molecular Biology and Evolution, 2011, 28, 3345-3354.	8.9	95

#	Article	IF	Citations
55	Effects of A and B Wolbachia and Host Genotype on Interspecies Cytoplasmic Incompatibility in Nasonia. Genetics, 1998, 148, 1833-1844.	2.9	92
56	Mapping of Hybrid Incompatibility Loci in Nasonia. Genetics, 1999, 153, 1731-1741.	2.9	90
57	THE EFFECT OF WOLBACHIA VERSUS GENETIC INCOMPATIBILITIES ON REINFORCEMENT AND SPECIATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1607-1619.	2.3	87
58	Extensive genomic diversity of closely related Wolbachia strains. Microbiology (United Kingdom), 2009, 155, 2211-2222.	1.8	87
59	Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biology, 2013, 14, R141.	9.6	85
60	Host Genotype Determines Cytoplasmic Incompatibility Type in the Haplodiploid Genus Nasonia. Genetics, 2003, 164, 223-233.	2.9	84
61	Brood Size and Sex Ratio Regulation in the Parasitic Wasp Nasonia Vitripennis (Walker) (Hymenoptera:) Tj ETQq1	1.0,78431 0.4	.4 rgBT /Ov
62	The Toxicogenome of <i>Hyalella azteca</i> : A Model for Sediment Ecotoxicology and Evolutionary Toxicology. Environmental Science & Echnology, 2018, 52, 6009-6022.	10.0	79
63	Hybrid origin of a B chromosome (PSR) in the parasitic wasp Nasonia vitripennis. Chromosoma, 1997, 106, 243-253.	2.2	76
64	Wolbachia-Induced Unidirectional Cytoplasmic Incompatibility and Speciation: Mainland-Island Model. PLoS ONE, 2007, 2, e701.	2.5	75
65	Wolbachia and cytoplasmic incompatibility in mycophagous Drosophila and their relatives. Heredity, 1995, 75, 320-326.	2.6	74
66	Behavioral and genetic characteristics of a new species of Nasonia. Heredity, 2010, 104, 278-288.	2.6	74
67	Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity, 2007, 99, 278-287.	2.6	73
68	POPULATION GENETICS OF A PARASITIC CHROMOSOME: EXPERIMENTAL ANALYSIS OF PSR IN SUBDIVIDED POPULATIONS. Evolution; International Journal of Organic Evolution, 1992, 46, 1257-1268.	2.3	68
69	Identification and characterization of the <i>doublesex</i> gene of <i>Nasonia</i> . Insect Molecular Biology, 2009, 18, 315-324.	2.0	67
70	Nextâ€generation biological control: the need for integrating genetics and genomics. Biological Reviews, 2020, 95, 1838-1854.	10.4	67
71	Recombination and Its Impact on the Genome of the Haplodiploid Parasitoid Wasp Nasonia. PLoS ONE, 2010, 5, e8597.	2.5	66
72	Evolution of Shape by Multiple Regulatory Changes to a Growth Gene. Science, 2012, 335, 943-947.	12.6	66

#	Article	IF	CITATIONS
73	A Venom Serpin Splicing Isoform of the Endoparasitoid Wasp Pteromalus puparum Suppresses Host Prophenoloxidase Cascade by Forming Complexes with Host Hemolymph Proteinases. Journal of Biological Chemistry, 2017, 292, 1038-1051.	3.4	66
74	Selfish Mitonuclear Conflict. Current Biology, 2019, 29, R496-R511.	3.9	66
75	PSR (paternal sex ratio) chromosomes: the ultimate selfish genetic elements. Genetica, 2003, 117, 85-101.	1.1	65
76	<i>Nasonia vitripennis</i> venom causes targeted gene expression changes in its fly host. Molecular Ecology, 2014, 23, 5918-5930.	3.9	63
77	Parasitoid venom induces metabolic cascades in fly hosts. Metabolomics, 2015, 11, 350-366.	3.0	61
78	The Effect of Wolbachia on Genetic Divergence between Populations: Models with Twoâ€Way Migration. American Naturalist, 2002, 160, S54-S66.	2.1	60
79	Brown marmorated stink bug, Halyomorpha halys (StåI), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genomics, 2020, 21, 227.	2.8	60
80	Combined effects of host quality and local mate competition on sex allocation inLariophagus distinguendus. Evolutionary Ecology, 1989, 3, 203-213.	1.2	58
81	Wolbachia run amok. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11154-11155.	7.1	58
82	Do Wolbachia influence fecundity in Nasonia vitripennis?. Heredity, 2000, 84, 54-62.	2.6	58
83	Evolution of Tandemly Repeated Sequences: What Happens at the End of an Array?. Journal of Molecular Evolution, 1999, 48, 469-481.	1.8	57
84	The genetic basis of interspecies host preference differences in the model parasitoid Nasonia. Heredity, 2010, 104, 270-277.	2.6	57
85	Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity, 2010, 104, 318-326.	2.6	57
86	Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biology, 2018, 16, 54.	3.8	57
87	Comparative Genomics of a Parthenogenesis-Inducing <i>Wolbachia</i> Symbiont. G3: Genes, Genomes, Genetics, 2016, 6, 2113-2123.	1.8	56
88	Genome-enabled insights into the biology of thrips as crop pests. BMC Biology, 2020, 18, 142.	3.8	54
89	Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia. PLoS Biology, 2016, 14, e1002500.	5.6	54
90	Effect of genotype on cytoplasmic incompatibility between two species of Nasonia. Heredity, 1993, 70, 428-436.	2.6	53

#	Article	lF	CITATIONS
91	Non-Coding Changes Cause Sex-Specific Wing Size Differences between Closely Related Species of Nasonia. PLoS Genetics, 2010, 6, e1000821.	3.5	53
92	Genetic and epigenetic architecture of sex-biased expression in the jewel wasps <i>Nasonia vitripennis</i> and <i>giraulti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3545-54.	7.1	53
93	Insights into the venom composition and evolution of an endoparasitoid wasp by combining proteomic and transcriptomic analyses. Scientific Reports, 2016, 6, 19604.	3.3	53
94	Characterization of an Ancient Lepidopteran Lateral Gene Transfer. PLoS ONE, 2013, 8, e59262.	2.5	52
95	INTRASPECIFIC VARIATION IN SEXUAL ISOLATION IN THE JEWEL WASP NASONIA. Evolution; International Journal of Organic Evolution, 2000, 54, 567-573.	2.3	50
96	Origin of males by genome loss in an autoparasitoid wasp. Heredity, 1993, 70, 162-171.	2.6	48
97	Symbionts provide pesticide detoxification. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8364-8365.	7.1	46
98	Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Molecular Biology and Evolution, 2019, 36, 1022-1036.	8.9	46
99	Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps. Molecular Biology and Evolution, 2016, 33, 1042-1052.	8.9	45
100	Maternal-offspring conflict leads to the evolution of dominant zygotic sex determination. Heredity, 2002, 88, 102-111.	2.6	43
101	The Genetic Basis of the Interspecific Differences in Wing Size in Nasonia (Hymenoptera; Pteromalidae): Major Quantitative Trait Loci and Epistasis. Genetics, 2002, 161, 673-684.	2.9	38
102	Transmission and expression of the parasitic paternal sex ratio (PSR) chromosome. Heredity, 1993, 70, 437-443.	2.6	37
103	Characterizing the Infection-Induced Transcriptome of Nasonia vitripennis Reveals a Preponderance of Taxonomically-Restricted Immune Genes. PLoS ONE, 2013, 8, e83984.	2.5	37
104	Larval RNAi in <i>Nasonia</i> (Parasitoid Wasp). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5311.	0.3	35
105	Comparative Genomics of Two Closely Related (i> Wolbachia / li> with Different Reproductive Effects on Hosts. Genome Biology and Evolution, 2016, 8, 1526-1542.	2.5	35
106	OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics, 2016, 17, 678.	2.8	35
107	A novel negative-stranded RNA virus mediates sex ratio in its parasitoid host. PLoS Pathogens, 2017, 13, e1006201.	4.7	35
108	A chromosomeâ€level genome assembly of the parasitoid wasp <i>Pteromalus puparum</i> Li>. Molecular Ecology Resources, 2020, 20, 1384-1402.	4.8	35

#	Article	IF	CITATIONS
109	Genome of the Parasitoid Wasp Diachasma alloeum, an Emerging Model for Ecological Speciation and Transitions to Asexual Reproduction. Genome Biology and Evolution, 2019, 11, 2767-2773.	2.5	34
110	Transfers of mitochondrial DNA to the nuclear genome in the wasp <i>Nasonia vitripennis</i> Molecular Biology, 2010, 19, 27-35.	2.0	33
111	Fine-Scale Mapping of the Nasonia Genome to Chromosomes Using a High-Density Genotyping Microarray. G3: Genes, Genomes, Genetics, 2013, 3, 205-215.	1.8	33
112	Behavioral and spermatogenic hybrid male breakdown in Nasonia. Heredity, 2010, 104, 289-301.	2.6	32
113	A new approach for investigating venom function applied to venom calreticulin in a parasitoid wasp. Toxicon, 2015, 107, 304-316.	1.6	32
114	Maternal-Zygotic Gene Conflict Over Sex Determination: Effects of Inbreeding. Genetics, 2000, 155, 1469-1479.	2.9	30
115	Distribution and reproductive effectsof Wolbachia in stalk-eyed flies (Diptera: Diopsidae). Heredity, 1998, 81, 254-260.	2.6	29
116	Distribution and fitness effects of the son-killer bacterium inNasonia. Evolutionary Ecology, 1996, 10, 593-607.	1.2	28
117	Rearing <i>Sarcophaga bullata</i> Fly Hosts for <i>Nasonia</i> (Parasitoid Wasp). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5308.	0.3	24
118	Conflicting signal in transcriptomic markers leads to a poorly resolved backbone phylogeny of chalcidoid wasps. Systematic Entomology, 2020, 45, 783-802.	3.9	23
119	Identification and Comparative Analysis of Venom Proteins in a Pupal Ectoparasitoid, Pachycrepoideus vindemmiae. Frontiers in Physiology, 2020, 11, 9.	2.8	21
120	Introgression study reveals two quantitative trait loci involved in interspecific variation in memory retention among Nasonia wasp species. Heredity, 2014, 113, 542-550.	2.6	20
121	Tissueâ€specific gene expression shows a cynipid wasp repurposes oak host gene networks to create a complex and novel parasiteâ€specific organ. Molecular Ecology, 2022, 31, 3228-3240.	3.9	20
122	Phylogenomic Analysis of <i>Wolbachia</i> Strains Reveals Patterns of Genome Evolution and Recombination. Genome Biology and Evolution, 2020, 12, 2508-2520.	2.5	19
123	The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biology, 2021, 19, 41.	3.8	19
124	The paternal-sex-ratio (PSR) chromosome in natural populations of Nasonia (Hymenoptera:) Tj ETQq0 0 0 rgBT /0	Overlock 1 1.7	0 Tf 50 142 To
125	Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathogens, 2020, 16, e1008397.	4.7	18
126	Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome. PLoS ONE, 2016, 11, e0151092.	2.5	18

#	Article	IF	CITATIONS
127	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	2.5	17
128	Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum: A comparative analysis in Chalcidoidea. International Journal of Biological Macromolecules, 2019, 121, 572-579.	7. 5	15
129	Strain Maintenance of <i>Nasonia vitripennis</i> (Parasitoid Wasp). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5307.	0.3	14
130	Venom is beneficial but not essential for development and survival of <scp><i>N</i></scp> <i>asonia</i>	2.2	14
131	Genetic Incompatibilities Between Mitochondria and Nuclear Genes: Effect on Gene Flow and Speciation. Frontiers in Genetics, 2019, 10, 62.	2.3	14
132	Dobzhansky-Muller and Wolbachia-Induced Incompatibilities in a Diploid Genetic System. PLoS ONE, 2014, 9, e95488.	2.5	14
133	Genome Report: Whole Genome Sequence and Annotation of the Parasitoid Jewel Wasp <i>Nasonia giraulti</i> Laboratory Strain RV2X[u]. G3: Genes, Genomes, Genetics, 2020, 10, 2565-2572.	1.8	12
134	Jekyll or Hyde? The genome (and more) of <i>Nesidiocoris tenuis</i> , a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Molecular Biology, 2021, 30, 188-209.	2.0	12
135	Using the <i>Wolbachia</i> Bacterial Symbiont to Teach Inquiry-Based Science: A High School Laboratory Series. American Biology Teacher, 2010, 72, 478-483.	0.2	11
136	Dissection of the complex genetic basis of craniofacial anomalies using haploid genetics and interspecies hybrids in Nasonia wasps. Developmental Biology, 2016, 415, 391-405.	2.0	11
137	Genome and Ontogenetic-Based Transcriptomic Analyses of the Flesh Fly, <i>Sarcophaga bullata</i> G3: Genes, Genomes, Genetics, 2019, 9, 1313-1320.	1.8	11
138	Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genetics, 2020, 16, e1008518.	3.5	11
139	Genome Assembly of the A-Group Wolbachia in Nasonia oneida Using Linked-Reads Technology. Genome Biology and Evolution, 2019, 11, 3008-3013.	2.5	10
140	Comparative analysis reveals the expansion of mitochondrial DNA control region containing unusually high G-C tandem repeat arrays in Nasonia vitripennis. International Journal of Biological Macromolecules, 2021, 166, 1246-1257.	7.5	9
141	Parasitoid Wasps and Their Venoms. , 2016, , 1-26.		9
142	Parasitoid Wasps and Their Venoms. Toxinology, 2017, , 187-212.	0.2	8
143	Meiotic and mitotic instability of two EMS-produced centric fragments in the haplodiploid wasp Nasonia vitripennis. Heredity, 2001, 87, 8-16.	2.6	7
144	Curing <i>Wolbachia</i> Infections in <i>Nasonia</i> (Parasitoid Wasp). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5312.	0.3	7

#	ARTICLE	IF	CITATIONS
145	Evaluating the evolution and function of the dynamic Venom Y protein in ectoparasitoid wasps. Insect Molecular Biology, 2019, 28, 499-508.	2.0	5
146	Evolutionary Genetics of Microbial Symbiosis. Genes, 2021, 12, 327.	2.4	4
147	THE INTERSPECIFIC ORIGIN OF B CHROMOSOMES: EXPERIMENTAL EVIDENCE. Evolution; International Journal of Organic Evolution, 2007, 55, 1069-1073.	2.3	3
148	Virgin Collection and Haplodiploid Crossing Methods in Nasonia (Parasitoid Wasp). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5310-pdb.prot5310.	0.3	3
149	Field Collection of Nasonia (Parasitoid Wasp) Using Baits. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5313-pdb.prot5313.	0.3	3
150	Parasitoid wasp venom elevates sorbitol and alters expression of metabolic genes in human kidney cells. Toxicon, 2019, 161, 57-64.	1.6	3
151	Novel ACE2 protein interactions relevant to COVID-19 predicted by evolutionary rate correlations. Peerl, 2021, 9, e12159.	2.0	3
152	Long-Read Assembly and Annotation of the Parasitoid Wasp Muscidifurax raptorellus, a Biological Control Agent for Filth Flies. Frontiers in Genetics, 2021, 12, 748135.	2.3	3
153	Egg Collection for <i>Nasonia</i> (Parasitoid Wasp). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5309.	0.3	2
154	Genetic, morphometric, and molecular analyses of interspecies differences in head shape and hybrid developmental defects in the wasp genus <i>Nasonia</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
155	Symbiosis instruction: considerations from the education workshop at the 6th ISS Congress. Symbiosis, 2010, 51, 67-73.	2.3	1
156	Distribution and reproductive effectsof Wolbachia in stalk-eyed flies(Diptera: Diopsidae). Heredity, 1998, 81, 254-260.	2.6	1
157	Functional characterization of the transcriptional regulatory elements of three highly expressed constitutive genes in the jewel wasp, <i>Nasonia vitripennis</i> . Insect Molecular Biology, 2017, 26, 743-751.	2.0	0