
Stefano Bonetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2084815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast electron dynamics in platinum and gold thin films driven by optical and terahertz fields. Applied Physics Letters, 2022, 120, .	3.3	7
2	State-resolved ultrafast charge and spin dynamics in [Co/Pd] multilayers. Applied Physics Letters, 2022, 120, .	3.3	8
3	Magnetization switching in the inertial regime. Physical Review B, 2022, 105, .	3.2	20
4	Terahertz charge and spin transport in metallic ferromagnets: The role of crystalline and magnetic order. Applied Physics Letters, 2022, 120, .	3.3	4
5	Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles. Science Advances, 2022, 8, eabn0523.	10.3	10
6	Stimulated resonant inelastic X-ray scattering in a solid. Communications Physics, 2022, 5, .	5.3	9
7	Inertial spin dynamics in ferromagnets. Nature Physics, 2021, 17, 245-250.	16.7	78
8	Analysis in <i>k</i> -Space of Magnetization Dynamics Driven by Strong Terahertz Fields. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	2
9	Nanoscale Transient Magnetization Gratings Created and Probed by Femtosecond Extreme Ultraviolet Pulses. Nano Letters, 2021, 21, 2905-2911.	9.1	16
10	A UHV MOKE magnetometer complementing XMCD-PEEM at the Elettra Synchrotron. Journal of Synchrotron Radiation, 2021, 28, 995-1005.	2.4	1
11	Dynamically induced magnetism in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>KTaO </mml:mi> <mml:mn> 3 Physical Review Research, 2021, 3, .</mml:mn></mml:msub></mml:math 	າ l:ກສາ6 i	ml 211 sub>
12	Anisotropic ultrafast spin dynamics in epitaxial cobalt. Applied Physics Letters, 2021, 118, .	3.3	9
13	Generation and detection of 50 GHz surface acoustic waves by extreme ultraviolet pulses. Applied Physics Letters, 2021, 119, .	3.3	15
14	Ultrafast Amplification and Nonlinear Magnetoelastic Coupling of Coherent Magnon Modes in an Antiferromagnet. Physical Review Letters, 2021, 127, 077202.	7.8	16
15	NTMpy: An open source package for solving coupled parabolic differential equations in the framework of the three-temperature model. Computer Physics Communications, 2021, 265, 107990.	7.5	10
16	Optical Frequency Up-Conversion of the Ferromagnetic Resonance in an Ultrathin Garnet Mediated by Magnetoelastic Coupling. Physical Review Letters, 2021, 127, 077203.	7.8	10
17	Anisotropic X-Ray Scattering of Transiently Oriented Water. Physical Review Letters, 2020, 125, 076002.	7.8	13
18	Volt-per-Ãngstrom terahertz fields from X-ray free-electron lasers. Journal of Synchrotron Radiation, 2020, 27, 796-798.	2.4	0

Stefano Bonetti

#	Article	IF	CITATIONS
19	Nonlinear Magnetization Dynamics Driven by Strong Terahertz Fields. Physical Review Letters, 2019, 123, 197204.	7.8	26
20	Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Physics Reports, 2019, 836-837, 1-74.	25.6	147
21	Terahertz-driven phonon upconversion in SrTiO3. Nature Physics, 2019, 15, 387-392.	16.7	128
22	Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys. Nature Communications, 2019, 10, 1756.	12.8	54
23	A THz View on Magnetization Dynamics: Opportunities from the THz userfacility TELBE. , 2019, , .		0
24	Selective THz control of magnetic order: new opportunities from superradiant undulator sources. Journal Physics D: Applied Physics, 2018, 51, 114007.	2.8	30
25	THz-driven demagnetization with perpendicular magnetic anisotropy: towards ultrafast ballistic switching. Journal Physics D: Applied Physics, 2018, 51, 084001.	2.8	21
26	Terahertz magnetic field enhancement in an asymmetric spiral metamaterial. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 224001.	1.5	12
27	Ultrafast Self-Induced X-Ray Transparency and Loss of Magnetic Diffraction. Physical Review Letters, 2018, 121, 137403.	7.8	20
28	Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Physical Review B, 2018, 98, .	3.2	49
29	Anti-reflection coating design for metallic terahertz meta-materials. Optics Express, 2018, 26, 2917.	3.4	8
30	Anti-reflection coating design for metallic terahertz meta-materials. , 2018, , .		0
31	X-ray imaging of spin currents and magnetisation dynamics at the nanoscale. Journal of Physics Condensed Matter, 2017, 29, 133004.	1.8	20
32	Local terahertz field enhancement for time-resolved x-ray diffraction. Applied Physics Letters, 2017, 110, .	3.3	21
33	The combination of micro-resonators with spatially resolved ferromagnetic resonance. Review of Scientific Instruments, 2017, 88, 093703.	1.3	13
34	Terahertz-driven phonon dynamics probed by ultrafast X-ray pulses. , 2017, , .		0
35	THz-driven ultrafast spin-lattice scattering. , 2016, , .		0
36	THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets. Physical Review Letters, 2016, 117, 087205.	7.8	83

STEFANO BONETTI

#	Article	IF	CITATIONS
37	Generation mechanism of terahertz coherent acoustic phonons in Fe. Physical Review B, 2016, 93, .	3.2	48
38	Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni. Scientific Reports, 2016, 6, 30092.	3.3	24
39	Direct observation of lattice motion driven by strong THz pulses. , 2016, , .		0
40	Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range. Review of Scientific Instruments, 2015, 86, 093703.	1.3	38
41	X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu. Physical Review Letters, 2015, 115, 096601.	7.8	38
42	Direct Observation of a Localized Magnetic Soliton in a Spin-Transfer Nanocontact. Physical Review Letters, 2015, 115, 127205.	7.8	56
43	Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nature Communications, 2015, 6, 8889.	12.8	52
44	Effects of a nonâ€absorbing substrate on the magnetoâ€optical Kerr response of plasmonic ferromagnetic nanodisks. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1067-1075.	1.8	23
45	Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field. Applied Physics Letters, 2014, 104, 092405.	3.3	28
46	THz light source at SLAC FACET user facility. , 2014, , .		0
47	Tuning the Magneto-Optical Response of Nanosize Ferromagnetic Ni Disks Using the Phase of Localized Plasmons. Physical Review Letters, 2013, 111, 167401.	7.8	111
48	Nano-Contact Spin-Torque Oscillators as Magnonic Building Blocks. Topics in Applied Physics, 2013, , 177-187.	0.8	19
49	Spin Torque–Generated Magnetic Droplet Solitons. Science, 2013, 339, 1295-1298.	12.6	237
50	Polarizability and magnetoplasmonic properties of magnetic general nanoellipsoids. Optics Express, 2013, 21, 9875.	3.4	34
51	Non-stationary excitation of two localized spin-wave modes in a nano-contact spin torque oscillator. Journal of Applied Physics, 2013, 114, 153906.	2.5	16
52	Spin-Wave-Mode Coexistence on the Nanoscale: A Consequence of the Oersted-Field-Induced Asymmetric Energy Landscape. Physical Review Letters, 2013, 110, 257202.	7.8	98
53	Spin-Torque Oscillator in an Electromagnet Package. IEEE Transactions on Magnetics, 2012, 48, 4378-4381.	2.1	9
54	Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators. Physical Review B, 2012, 85, .	3.2	49

STEFANO BONETTI

#	Article	IF	CITATIONS
55	Frequency modulation of spin torque oscillator pairs. Applied Physics Letters, 2011, 98, 192501.	3.3	41
56	Designer Magnetoplasmonics with Nickel Nanoferromagnets. Nano Letters, 2011, 11, 5333-5338.	9.1	203
57	Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotechnology, 2011, 6, 635-638.	31.5	321
58	Plasmonic Nickel Nanoantennas. Small, 2011, 7, 2341-2347.	10.0	175
59	Spin-torque oscillator linewidth narrowing under current modulation. Applied Physics Letters, 2011, 98, 192506.	3.3	42
60	FORC studies of exchange biased NiFe in <i>L</i> 1 ₀ (111) FePt-based spin valve. Journal of Physics: Conference Series, 2010, 200, 072002.	0.4	0
61	Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator. Physical Review B, 2010, 81, .	3.2	89
62	Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts. Physical Review Letters, 2010, 105, 217204.	7.8	176
63	First-order reversal curve analysis of graded anisotropy FePtCu films. Applied Physics Letters, 2010, 97, 202501.	3.3	32
64	Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz. Applied Physics Letters, 2009, 94, .	3.3	158
65	Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer. New Journal of Physics, 2009, 11, 103028.	2.9	62
66	Pseudo-spin-valve with L10 (111)-oriented FePt fixed layer. Journal of Applied Physics, 2009, 105, 07E910.	2.5	23
67	Capacitance Enhanced Synchronization of Pairs of Spin-Transfer Oscillators. IEEE Transactions on Magnetics, 2009, 45, 2421-2423.	2.1	19
68	Pseudo spin valves based on L10 (111)-oriented FePt fixed layers with tilted anisotropy. Applied Physics Letters, 2009, 94, 163108.	3.3	48
69	Microwave generation of tilted-polarizer spin torque oscillator. Journal of Applied Physics, 2009, 105, 07D116.	2.5	45
70	Spin-torque oscillator with tilted fixed layer magnetization. Applied Physics Letters, 2008, 92, .	3.3	102
71	Tunable intrinsic phase of a spin torque oscillator. Applied Physics Letters, 2008, 92, .	3.3	60

72 Buried Tantalate-Niobate Microwave Varactors. , 2006, , .

#	Article	IF	CITATIONS
73	Low field driven latching-type Bi3Fe5O12â^•Gd3Ga5O12 magneto-optical display. Applied Physics Letters, 2006, 88, 242504.	3.3	18