Jun-Ming Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2082361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MXene-Bonded hollow MoS2/Carbon sphere strategy for high-performance flexible sodium ion storage. Chemical Engineering Journal, 2022, 430, 132755.	12.7	49
2	Self-assembled Cobalt-doped NiMn-layered double hydroxide (LDH)/V2CT MXene hybrids for advanced aqueous electrochemical energy storage properties. Chemical Engineering Journal, 2022, 430, 132992.	12.7	53
3	A low-surface-energy design to allogeneic sulfide heterostructures anchored on ultrathin graphene sheets for fast sodium storage. Chemical Engineering Journal, 2022, 432, 134195.	12.7	6
4	Ultrafine Sb2S3@carbon-nanofibers for fast and stable sodium storage. Electrochimica Acta, 2022, 411, 140067.	5.2	16
5	Anchored SnS nanorods based on a carbon-enhanced Nb2CTx three-dimensional nanoflower framework achieve stable, high capacity Na-ion storage. Applied Surface Science, 2022, 597, 153598.	6.1	7
6	Tunable agglomeration of Co3O4 nanowires as the growing core for in-situ formation of Co2NiO4 assembled with polyaniline-derived carbonaceous fibers as the high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853, 157210.	5.5	47
7	Nitrogen/sulphur dual-doped hierarchical carbonaceous fibers boosting potassium-ion storage. Journal of Energy Chemistry, 2021, 55, 420-427.	12.9	41
8	Effects of low doping on the improvement of cathode materials Na _{3+<i>x</i>} V _{2â^²<i>x</i>} M _{<i>x</i>} (PO ₄) ₃ (M = Co ²⁺ , Cu ²⁺ ; <i>x</i> = 0.01–0.05) for SIBs. Journal of Materials Chemistry A, 2021, 9, 17380-17389.	10.3	24
9	Highly conductive Co3Se4 embedded in N-doped 3D interconnected carbonaceous network for enhanced lithium and sodium storage. Journal of Colloid and Interface Science, 2021, 586, 630-639.	9.4	27
10	Carbon-Reinforced Nb ₂ CT _x MXene/MoS ₂ Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano, 2021, 15, 7439-7450.	14.6	203
11	Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage. Nano-Micro Letters, 2021, 13, 113.	27.0	100
12	High-rate supercapacitor based on 3D hierarchical N-doped porous carbon derived from sustainable spongy cornstalk pith. Journal of Energy Storage, 2021, 37, 102470.	8.1	25
13	Ti ₃ C ₂ T <i>_x</i> MXene Conductive Layers Supported Bioâ€Derived Fe <i>_x</i> _{a^'1}Se<i>_x</i>/MXene/Carbonaceous Nanoribbons for Highâ€Performance Half/Full Sodiumâ€Ion and Potassiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101535.	21.0	128
14	Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 109-118.	9.4	72
15	The direct Z-scheme CdxZn1-xS nanorods-Fe2O3 quantum dots heterojunction/reduced graphene oxide nanocomposites for photocatalytic degradation and photocatalytic hydrogen evolution. Applied Surface Science, 2021, 570, 151085.	6.1	35
16	Microbe-Assisted Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS Nano, 2021, 15, 3423-3433.	14.6	158
17	Comparative analysis of Co9S8/S-doped rGO composites as high-performance electrodes via facile one-step anneal fabrication for supercapacitor application. Journal of Alloys and Compounds, 2020, 815, 152448.	5.5	13
18	Planar supercapacitor with high areal capacitance based on Ti3C2/Polypyrrole composite film. Electrochimica Acta, 2020, 330, 135277.	5.2	68

Jun-Ming Cao

#	Article	lF	CITATIONS
19	Superior full battery performance of tunable hollow N-Doped carbonaceous fibers encapsulating Ni3S2 nanocrystals with enhanced Li/Na storage. Electrochimica Acta, 2020, 332, 135446.	5.2	23
20	Ultravioletâ€Assisted Construction of Nitrogenâ€Rich Ag@Ti ₃ C ₂ T <i>_x</i> MXene for Highly Efficient Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Materials Interfaces, 2020, 7, 2001449.	3.7	31
21	Highly flexible free-standing Sb/Sb ₂ O ₃ @N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability. Sustainable Energy and Fuels, 2020, 4, 5732-5738.	4.9	14
22	Lithiumâ€Sulfur Batteries: Ultrafine Co ₃ Se ₄ Nanoparticles in Nitrogenâ€Doped 3D Carbon Matrix for Highâ€Stable and Longâ€Cycleâ€Life Lithium Sulfur Batteries (Adv. Energy Mater. 19/2020). Advanced Energy Materials, 2020, 10, 2070088.	19.5	4
23	Ultrafine Co ₃ Se ₄ Nanoparticles in Nitrogenâ€Doped 3D Carbon Matrix for Highâ€Stable and Longâ€Cycleâ€Life Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1904273.	19.5	141
24	Phosphorus-doped polymeric carbon nitride nanosheets for enhanced photocatalytic hydrogen production. APL Materials, 2020, 8, .	5.1	37
25	3D Chemical Crossâ€Linking Structure of Black Phosphorus@CNTs Hybrid as a Promising Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2020, 30, 1909372.	14.9	92
26	Printable Ta Substrate with High Stability and Enhanced Interface Adhesion for Flexible Supercapacitor Performance Improvement. Advanced Materials Technologies, 2019, 4, 1900338.	5.8	5
27	A Highly Conductive MOF of Graphene Analogue Ni ₃ (HITP) ₂ as a Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1902605.	10.0	136
28	Lithium–Sulfur Batteries: A Highly Conductive MOF of Graphene Analogue Ni ₃ (HITP) ₂ as a Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries (Small 44/2019). Small, 2019, 15, 1970240.	10.0	7
29	Hierarchical core–shell structural NiMoO ₄ @NiS ₂ /MoS ₂ nanowires fabricated <i>via</i> an <i>in situ</i> sulfurization method for high performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 21759-21765.	10.3	125
30	Mn-Doped Ni/Co LDH Nanosheets Grown on the Natural N-Dispersed PANI-Derived Porous Carbon Template for a Flexible Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 10699-10707.	6.7	113
31	A facile synthesis of self-assembling reduced graphene oxide/cobalt carbonate hydroxide papers for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 159-166.	2.2	9
32	Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustainable Energy and Fuels, 2018, 2, 1350-1355.	4.9	64
33	Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochimica Acta, 2018, 286, 264-270.	5.2	47
34	Efficient Supercapacitors Based on Co ₉ S ₈ /Graphene Composites for Electric Vehicles. SAE International Journal of Alternative Powertrains, 0, 7, 289-295.	0.8	2