List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2082037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An efficient BrÃnsted acid ionic liquid catalyzed synthesis of novel spiro1,2,4-triazolidine-5-thiones and their photoluminescence study. Journal of Molecular Structure, 2022, 1249, 131528.	3.6	7
2	Quantum processing of cytidine derivatives and evaluating their in silico interactions with the COVID-19 main protease. Main Group Chemistry, 2022, 21, 263-270.	0.8	8
3	The artificial neural network-based QSPR and DFT prediction of lipophilicity for thioguanine. Main Group Chemistry, 2022, 21, 1091-1103.	0.8	1
4	Interactions of coumarin derivatives with monoamine oxidase biomarkers: In silico approach. Main Group Chemistry, 2022, 21, 641-650.	0.8	3
5	Molecular interactions of indomethacin and amino acids: Computational approach. Main Group Chemistry, 2022, 21, 611-621.	0.8	8
6	Inhibitory effects of curcumin on aldose reductase and cyclooxygenase-2 enzymes. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6424-6430.	3.5	19
7	Formulation and Evaluation of Herbal Hand Sanitizer Based on Stevia (Stevia rebaudiana). Journal of Physics: Conference Series, 2021, 1858, 012053.	0.4	1
8	HOMO-LUMO photosensitization analyses of coronene-cytosine complexes. Main Group Chemistry, 2021, 20, 565-573.	0.8	21
9	DNA Codon Recognition by a Cubane Wire: In Silico Approach. Turkish Computational and Theoretical Chemistry, 2021, 5, 13-19.	0.5	14
10	Structural Analysis of Some Pyrrolopyrimidine Derivatives and Examining their Binding Affinity against Cyclooxygenase-2 Enzyme. Turkish Computational and Theoretical Chemistry, 2021, 5, 14-23.	0.5	3
11	6-Methoxylated Flavonoids: Jacein, and 3-demethyljacein from with Their Endoplasmic Reticulum Stress and Apoptotic Cell Death in Breast Cancer Cells Along with Analysis. Iranian Journal of Pharmaceutical Research, 2021, 20, 417-432.	0.5	0
12	A new sesquiterpenoid from the shoots of Iranian Daphne mucronata Royle with selective inhibition of STAT3 and Smad3/4 cancer-related signaling pathways. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 253-262.	2.0	39
13	Halogenated derivatives of cytidine: Structural analysis and binding affinity. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050033.	1.8	18
14	Lab-in-Silico. Advanced Journal of Chemistry Section B, 2020, 2, 1-2.	0.6	1
15	Non-Covalent Interactions of N-(4-CarboxyPhenyl)Phthalimide with CNTs. Advanced Journal of Chemistry Section B, 2020, 2, 39-45.	0.6	2
16	Computational Studies of Furanone and its 5Methyl/5Phenyl Derivatives. Advanced Journal of Chemistry Section B, 2020, 2, 33.	0.6	0
17	A molecular modelling study of the effects of pivalate ligand substitutions on the magnetic properties of chromium-wheels host complexes. Journal of Molecular Graphics and Modelling, 2019, 87, 41-47.	2.4	1
18	Influence of ligand-bridged substitution on the exchange coupling constant of chromium-wheels host complexes: a density functional theory study. Molecular Physics, 2018, 116, 1306-1319.	1.7	2

#	Article	IF	CITATIONS
19	Functionalization of (n, 0) CNTs (n = 3–16) by uracil: DFT studies. European Physical Journal B, 2018, 91, 1.	1.5	7
20	Surface interaction of H ₂ O and H ₂ S onto Ca ₁₂ O ₁₂ nanocluster: Quantum hemical analyses. Surface and Interface Analysis, 2018, 50, 411-419.	1.8	47
21	Electronic structure study of the bimetallic Cu _{1-x} Zn _x alloy thin films. Materials Technology, 2018, 33, 193-197.	3.0	14
22	Chemically uracil–functionalized carbon and silicon carbide nanotubes: Computational studies. Materials Chemistry and Physics, 2018, 205, 164-170.	4.0	12
23	Beryllium oxide (BeO) nanotube provides excellent surface towards adenine adsorption: A dispersion-corrected DFT study in gas and water phases. Current Applied Physics, 2018, 18, 1059-1065.	2.4	56
24	DFT Studies of Single Lithium Adsorption on Coronene. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 685-691.	1.5	14
25	<i>Stevia rebaudiana</i> in Food and Beverage Applications and Its Potential Antioxidant and Antidiabetic: Mini Review. Advanced Science Letters, 2018, 24, 9133-9137.	0.2	6
26	Synthesis and characterization of some novel diaryl urea derivatives bearing quinoxalindione moiety. Research in Pharmaceutical Sciences, 2018, 13, 82.	1.8	8
27	Nickel-decorated B ₁₂ P ₁₂ nanoclusters as a strong adsorbent for SO ₂ adsorption: Quantum chemical calculations. Canadian Journal of Physics, 2017, 95, 958-962.	1.1	44
28	DFT studies of stabilities and properties for X3Y6Z9 borazine–like structures (X= B/Al, Y= N/P, Z= H/Me). Superlattices and Microstructures, 2017, 109, 360-365.	3.1	4
29	Application of pristine and Ni-decorated B 12 P 12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Computational and Theoretical Chemistry, 2017, 1109, 1-9.	2.5	69
30	DFT Studies of Graphene-Functionalised Derivatives of Capecitabine. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 1131-1138.	1.5	11
31	Protection capacity of mosquito repellent ink from citronella (Cymbopogon nardus L.) and clove leaf oils (Syzygium aromaticum) againts Aedes aegypti. AIP Conference Proceedings, 2017, , .	0.4	3
32	Non-Covalent Functionalisation of C ₃₀ Fullerene by Pyrrole- <i>n</i> -Carboxylic Acid (<i>n</i> =2, 3): Density Functional Theory Studies. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 73, 51-56.	1.5	12
33	Docking study, synthesis and antimicrobial evaluation of some novel 4-anilinoquinazoline derivatives. Research in Pharmaceutical Sciences, 2017, 12, 425.	1.8	24
34	Synthesis, characterization, cytotoxic screening, and density functional theory studies of new derivatives of quinazolin-4(3H)-one Schiff bases. Research in Pharmaceutical Sciences, 2017, 12, 444.	1.8	7
35	Biological evaluation, docking and molecular dynamic simulation of some novel diaryl urea derivatives bearing quinoxalindione moiety. Research in Pharmaceutical Sciences, 2017, 12, 500.	1.8	9
36	Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2160-2166.	2.1	42

#	Article	IF	CITATIONS
37	DFT explorations of quadrupole coupling constants for planar 5-fluorouracil pairs. Computational and Theoretical Chemistry, 2016, 1090, 67-73.	2.5	35
38	Synthesis, vibrational, electrostatic potential and NMR studies of (E and Z) 1-(4-chloro-3-nitrophenyl)-3-(2-methoxyphenyl)triazene: Combined experimental and DFT approaches. Journal of Molecular Structure, 2016, 1125, 247-259.	3.6	6
39	Explorations of Crystalline Effects on 4-(Benzyloxy)Benzaldehyde Properties. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 1013-1018.	1.5	4
40	DFT studies of CNT–functionalized uracil-acetate hybrids. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 73, 105-109.	2.7	8
41	Covalent addition of chitosan to graphene sheets: Density functional theory explorations of quadrupole coupling constants. Superlattices and Microstructures, 2015, 88, 56-61.	3.1	13
42	DFT studies of 5-fluorouracil tautomers on a silicon graphene nanosheet. Superlattices and Microstructures, 2015, 85, 784-788.	3.1	38
43	Formations of CNT modified 5-(halogen)uracil hybrids: DFT studies. Superlattices and Microstructures, 2014, 65, 375-379.	3.1	7
44	Formations of boron-doped and nitrogen-doped silicon nanotubes: DFT studies. Superlattices and Microstructures, 2013, 64, 52-57.	3.1	10
45	Uracil-functionalized ultra-small (n,0) boron nitride nanotubes (n=3–6): Computational studies. Superlattices and Microstructures, 2013, 57, 44-50.	3.1	12
46	Formation of a peptide assisted bi-graphene and its properties: DFT studies. Superlattices and Microstructures, 2013, 54, 47-53.	3.1	7
47	Investigating pristine and carbon-decorated silicon nanocones: DFT studies. Superlattices and Microstructures, 2013, 58, 130-134.	3.1	5
48	Modified (n, 0) BN nanotubes (n=3–10) by acetic acids: DFT studies. Superlattices and Microstructures, 2013, 55, 1-7.	3.1	17
49	A cytosine-assisted carbon nanotubes junction: DFT studies. Superlattices and Microstructures, 2012, 52, 158-164.	3.1	5
50	Modifying a graphene layer by a thymine or a uracil nucleobase: DFT studies. Superlattices and Microstructures, 2012, 52, 306-311.	3.1	22
51	Silicon carbide nanocones: Computational analysis of chemical shieldings for pristine and boron/nitrogen decorated models. Superlattices and Microstructures, 2012, 52, 523-527.	3.1	7
52	Covalent hybridizations of carbon nanotubes through peptide linkages: A density functional approach. Computational and Theoretical Chemistry, 2012, 981, 47-51.	2.5	7
53	Computational studies of the purine-functionalized graphene sheets. Superlattices and Microstructures, 2012, 52, 612-617.	3.1	37
54	Boron nitride nanotubes with quadrangular cross sections: Density functional studies. Superlattices and Microstructures, 2012, 52, 648-652.	3.1	2

MAHMOUD MIRZAEI

#	Article	IF	CITATIONS
55	Covalent attachments of boron nitride nanotubes through a carboxylic linker: Density functional studies. Solid State Sciences, 2012, 14, 689-692.	3.2	10
56	Studying (n, 0) and (m,m) GaP nanotubes (nÂ=Â3–10 and mÂ=Â2–6) through DFT calculations of Ga-69 quadrupole coupling constants. Solid State Sciences, 2012, 14, 801-804.	3.2	12
57	Density functional studies of oxygen-terminations versus hydrogen-terminations in carbon and silicon nanotubes. Solid State Sciences, 2012, 14, 874-879.	3.2	8
58	Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies. Superlattices and Microstructures, 2012, 51, 809-813.	3.1	9
59	A computational study of aluminum phosphide nanotubes. International Journal of Quantum Chemistry, 2011, 111, 3851-3855.	2.0	3
60	Density functional studies of the fluorine-terminated boron nitride nanotubes through computations of quadrupole coupling constants. Computational and Theoretical Chemistry, 2011, 977, 29-33.	2.5	9
61	Computational NMR studies of silicon nanotubes. Computational and Theoretical Chemistry, 2011, 978, 123-125.	2.5	12
62	The C-doped AlP nanotubes: A computational study. Solid State Sciences, 2011, 13, 244-250.	3.2	34
63	Investigating electronic and structural properties of nitrogen-doped silicon carbide nanotubes through density functional calculations of chemical shielding parameters. Solid State Sciences, 2011, 13, 1251-1255.	3.2	8
64	Computational studies of effects of tubular lengths on the NMR properties of pristine and carbon decorated boron phosphide nanotubes. Solid State Sciences, 2011, 13, 1926-1930.	3.2	16
65	Carbon doped boron phosphide nanotubes: A computational study. Journal of Molecular Modeling, 2011, 17, 89-96.	1.8	32
66	A computational study of atomic oxygen-doped silicon carbide nanotubes. Journal of Molecular Modeling, 2011, 17, 527-531.	1.8	8
67	Covalent hybridization of CNT by thymine and uracil: A computational study. Journal of Molecular Modeling, 2011, 17, 695-699.	1.8	38
68	DFT calculations of NMR properties for GaP nanotubes. Monatshefte Für Chemie, 2011, 142, 111-114.	1.8	13
69	A DFT study of N-doped AlP nanotubes. Monatshefte Für Chemie, 2011, 142, 115-118.	1.8	9
70	A theoretical study of boron-doped aluminum phosphide nanotubes. Computational and Theoretical Chemistry, 2011, 963, 294-297.	2.5	6
71	A computational study of silicon-doped aluminum phosphide nanotubes. Physica B: Condensed Matter, 2011, 406, 84-87.	2.7	3
72	A computational study of gallium phosphide nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1343-1345.	2.7	15

#	Article	IF	CITATIONS
73	COMPUTATIONAL STUDY OF A CNT-URACIL-CNT COMPOUND. Modern Physics Letters B, 2011, 25, 1335-1341.	1.9	5
74	A Computational NMR Study of Boron Phosphide Nanotubes. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 844-848.	1.5	14
75	The Al-doped BN nanotubes: A DFT study. Computational and Theoretical Chemistry, 2010, 942, 83-87.	1.5	41
76	Aluminum phosphide nanotubes: Density functional calculations of aluminum-27 and phosphorus-31 chemical shielding parameters. Computational and Theoretical Chemistry, 2010, 951, 69-71.	1.5	36
77	Computational NQR study of a boron nitride nanocone. Monatshefte Für Chemie, 2010, 141, 305-307.	1.8	3
78	A computational study of oxygen-termination of a (6,0) boron nitride nanotube. Monatshefte Für Chemie, 2010, 141, 491-494.	1.8	12
79	SiC-doped boron nitride nanotubes: computations of 11B and 14N quadrupole coupling constants. Monatshefte Für Chemie, 2010, 141, 611-614.	1.8	6
80	SiC nanotubes: DFT calculations of 29Si and 13C NMR properties. Monatshefte Für Chemie, 2010, 141, 941-943.	1.8	6
81	Electronic structure of sulfur terminated zigzag boron nitride nanotube: A computational study. Solid State Sciences, 2010, 12, 1337-1340.	3.2	7
82	Computational studies on boron nitride and boron phosphide nanotubes: Density functional calculations of boron-11 electric field gradient tensors. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1667-1669.	2.7	40
83	The NMR parameters of the SiC-doped BN nanotubes: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1954-1957.	2.7	19
84	Sulfur doping at the tips of (6,0) boron nitride nanotube: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2147-2150.	2.7	28
85	Computational investigation of the electronic and structural properties of ultra small-diameter boron nitride nanotubes. Physica B: Condensed Matter, 2010, 405, 2542-2544.	2.7	12
86	Computations of the quadrupole coupling constants in aluminum doped boron nitride nanotubes. Physica B: Condensed Matter, 2010, 405, 3991-3994.	2.7	5
87	The B-doped SiC nanotubes: A computational study. Computational and Theoretical Chemistry, 2010, 953, 134-138.	1.5	26
88	An electronic structure study of O-terminated zigzag BN nanotubes: Density functional calculations of the quadrupole coupling constants. Solid State Communications, 2010, 150, 1238-1240.	1.9	12
89	Defective BN Nanotubes: A Density Functional Theory Study of B-11 and N-14 NQR Parameters. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 251-256.	1.5	8
90	Density Functional Study of Defects in Boron Nitride Nanotubes. Zeitschrift Fur Physikalische Chemie, 2009, 223, 815-823.	2.8	26

#	Article	IF	CITATIONS
91	Calculation of chemical shielding in C-doped zigzag BN nanotubes. Monatshefte Für Chemie, 2009, 140, 1275-1278.	1.8	34
92	DFT calculations of B-11 and N-15 NMR parameters in BN nanocone. Computational and Theoretical Chemistry, 2009, 913, 207-209.	1.5	15
93	The carbon-doped (4,4) boron nitride nanotube: A computational NMR approach. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 883-885.	2.7	44
94	Determination of Pseudoephedrine Hydrochloride in Some Pharmaceutical Drugs by Potentiometric Membrane Sensor Based on Pseudoephedrine–Phosphotungstate Ion Pair. Analytical Letters, 2009, 42, 870-880.	1.8	17
95	Study of hydrogen bonds in N-methylacetamide by DFT calculations of oxygen, nitrogen, and hydrogen solid-state NMR parameters. Structural Chemistry, 2008, 19, 225-232.	2.0	10
96	A computational NQR study on the hydrogenâ€bonded lattice of cytosineâ€5â€acetic acid. Journal of Computational Chemistry, 2008, 29, 832-838.	3.3	32
97	Density functional calculations of 14N and 11B NQR parameters in the H-capped (6,0) and (4,4) single-walled BN nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 800-804.	2.7	38
98	Density functional study of zigzag BN nanotubes with equivalent ends. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3060-3063.	2.7	37
99	A computational NMR study on zigzag aluminum nitride nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 209-212.	2.7	33
100	The C-doped zigzag AlN nanotube: A computational NMR study. Chemical Physics Letters, 2008, 461, 246-248.	2.6	45
101	Hydrogen bond interactions in sulfamerazine: DFT study of the O-17, N-14, and H-2 electric field gradient tensors. Chemical Physics, 2008, 351, 159-162.	1.9	10
102	CARBON-SUBSTITUTING IN (4,4) BORON NITRIDE NANOTUBE: DENSITY FUNCTIONAL STUDY OF BORON-11 AND NITROGEN-14 ELECTRIC FIELD GRADIENT TENSORS. Journal of Theoretical and Computational Chemistry, 2008, 07, 447-455.	1.8	4
103	Density Functional Study of the Influence of Carbon Doping on the Aluminum-27 and Nitrogen-14 Electric Field Gradient Tensors in (10, 0) Single-Walled Aluminum Nitride Nanotube. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1569-1577.	2.8	0
104	AlN Nanotubes: A DFT Study of Al-27 and N-14 Electric Field Gradient Tensors. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 711-715.	1.5	16
105	Influence of C-Doping on the B-11 and N-14 Quadrupole Coupling Constants in Boron-Nitride Nanotubes: A DFT Study. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 56-60.	1.5	31
106	Study of hydrogen bonds in 1-methyluracil by DFT calculations of oxygen, nitrogen, and hydrogen quadrupole coupling constants and isotropic chemical shifts. Chemical Physics Letters, 2007, 438, 304-307.	2.6	24
107	A density functional study of 17O, 14N and 2H electric field gradient tensors in the real crystalline structure of α-glycine. Biophysical Chemistry, 2007, 125, 179-183.	2.8	32
108	Investigation of C–H…OC and N–H…OC hydrogen-bonding interactions in crystalline thymine by DFT calculations of O-17, N-14 and H-2 NQR parameters. Biophysical Chemistry, 2007, 125, 411-415.	2.8	31

#	Article	IF	CITATIONS
109	A Systematic Investigation of Hydrogen-Bonding Effects on the170,14N, and2H Nuclear Quadrupole Resonance Parameters of Anhydrous and Monohydrated Cytosine Crystalline Structures:Â A Density Functional Theory Study. Journal of Physical Chemistry B, 2006, 110, 10991-10996.	2.6	27
110	An Investigation of Hydrogen-Bonding Effects on the Nitrogen and Hydrogen Electric Field Gradient and Chemical Shielding Tensors in the 9-Methyladenine Real Crystalline Structure:Â A Density Functional Theory Study. Journal of Physical Chemistry A, 2006, 110, 4833-4838.	2.5	61
111	The C–H···O Hydrogen Bonding Effects on the ¹⁷ O Electric Field Gradient and Chemical Shielding Tensors in Crystalline 1-Methyluracil: A DFT Study. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2006, 61, 383-388.	1.5	12