John F Stanton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/208176/publications.pdf

Version: 2024-02-01

		36303	25/8/
159	12,516	51	108
papers	citations	h-index	g-index
163	163	163	5827
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The equation of motion coupledâ€eluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. Journal of Chemical Physics, 1993, 98, 7029-7039.	3.0	2,168
2	HEAT: High accuracy extrapolatedab initiothermochemistry. Journal of Chemical Physics, 2004, 121, 11599-11613.	3.0	691
3	The ACES II program system. International Journal of Quantum Chemistry, 1992, 44, 879-894.	2.0	404
4	Coupled-cluster techniques for computational chemistry: The <scp>CFOUR</scp> program package. Journal of Chemical Physics, 2020, 152, 214108.	3.0	375
5	High-accuracy extrapolated <i>ab initio</i> thermochemistry. III. Additional improvements and overview. Journal of Chemical Physics, 2008, 128, 114111.	3.0	367
6	Perturbative treatment of triple excitations in coupledâ€cluster calculations of nuclear magnetic shielding constants. Journal of Chemical Physics, 1996, 104, 2574-2583.	3.0	359
7	The accurate determination of molecular equilibrium structures. Journal of Chemical Physics, 2001, 114, 6548-6556.	3.0	353
8	High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification. Journal of Chemical Physics, 2006, 125, 064108.	3.0	312
9	Quantum-chemical calculation of spectroscopic parameters for rotational spectroscopy. International Reviews in Physical Chemistry, 2010, 29, 273-367.	2.3	288
10	IUPAC Critical Evaluation of Thermochemical Properties of Selected Radicals. Part I. Journal of Physical and Chemical Reference Data, 2005, 34, 573-656.	4.2	283
11	Applications of Post-Hartree-Fock Methods: A Tutorial. Reviews in Computational Chemistry, 2007, , 65-169.	1.5	273
12	Coupledâ€eluster calculations of nuclear magnetic resonance chemical shifts. Journal of Chemical Physics, 1995, 103, 3561-3577.	3.0	257
13	Coupledâ€cluster openâ€shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations. Journal of Chemical Physics, 1991, 95, 2623-2638.	3.0	248
14	A direct product decomposition approach for symmetry exploitation in manyâ€body methods. I. Energy calculations. Journal of Chemical Physics, 1991, 94, 4334-4345.	3.0	246
15	Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants. Journal of Chemical Physics, 2003, 118, 10407-10417.	3.0	246
16	Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants. Journal of Chemical Physics, 2002, 116, 6482-6496.	3.0	245
17	On the extent of spin contamination in openâ€shell coupledâ€cluster wave functions. Journal of Chemical Physics, 1994, 101, 371-374.	3.0	205
18	Gaugeâ€invariant calculation of nuclear magnetic shielding constants at the coupled–cluster singles and doubles level. Journal of Chemical Physics, 1995, 102, 251-253.	3.0	205

#	Article	IF	CITATIONS
19	The Equilibrium Structure of Benzene. Journal of Physical Chemistry A, 2000, 104, 2865-2868.	2.5	177
20	Manyâ€body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equationâ€ofâ€motion coupledâ€cluster method. Journal of Chemical Physics, 1993, 99, 8840-8847.	3.0	176
21	On the choice of orbitals for symmetry breaking problems with application to NO3. Journal of Chemical Physics, 1992, 97, 5554-5559.	3.0	165
22	Structures, Automerizations, and Isomerizations of C3H2Isomers. Journal of the American Chemical Society, 1997, 119, 5847-5856.	13.7	141
23	On the vibronic level structure in the NO3 radical. I. The ground electronic state. Journal of Chemical Physics, 2007, 126, 134309.	3.0	133
24	Simple(r) algebraic equation for transition moments of fundamental transitions in vibrational second-order perturbation theory. Molecular Physics, 2006, 104, 377-388.	1.7	122
25	Photoelectron Wave Function in Photoionization: Plane Wave or Coulomb Wave?. Journal of Physical Chemistry Letters, 2015, 6, 4532-4540.	4.6	115
26	A coupledâ€eluster based effective Hamiltonian method for dynamic electric polarizabilities. Journal of Chemical Physics, 1993, 99, 5178-5183.	3.0	103
27	Analytic UHF-CCSD(T) second derivatives: implementation and application to the calculation of the vibration-rotation interaction constants of NCO and NCS. Theoretical Chemistry Accounts, 1998, 100, 5-11.	1.4	103
28	Analytic evaluation of energy gradients at the coupledâ€cluster singles and doubles level using quasiâ€restricted Hartree–Fock openâ€shell reference functions. Journal of Chemical Physics, 1991, 95, 2639-2645.	3.0	96
29	Quantifying Hydrogenâ€Bond Populations in Dimethyl Sulfoxide/Water Mixtures. Angewandte Chemie - International Edition, 2017, 56, 11375-11379.	13.8	94
30	Highly correlated singleâ€reference studies of the O3 potential surface. I. Effects of high order excitations on the equilibrium structure and harmonic force field of ozone. Journal of Chemical Physics, 1989, 90, 1077-1082.	3.0	92
31	The Simplest Criegee Intermediate (H ₂ Câ•O–O): Isotopic Spectroscopy, Equilibrium Structure, and Possible Formation from Atmospheric Lightning. Journal of Physical Chemistry Letters, 2013, 4, 4133-4139.	4.6	88
32	Linear and cyclic isomers of C4. A theoretical study with coupledâ€eluster methods and large basis sets. Journal of Chemical Physics, 1992, 97, 8372-8381.	3.0	85
33	Analytic gradients for the coupled-cluster singles, doubles, and triples (CCSDT) model. Journal of Chemical Physics, 2002, 116, 1773-1782.	3.0	83
34	Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis. Journal of Physical Chemistry A, 2015, 119, 5524-5533.	2.5	83
35	Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 Molecules. Journal of Chemical Theory and Computation, 2017, 13, 1044-1056.	5. 3	81
36	Electron-Correlated Approaches for the Calculation of NMR Chemical Shifts. Advances in Chemical Physics, 2003, , 355-422.	0.3	79

#	Article	IF	CITATIONS
37	Treatment of Fermi resonance effects on transition moments in vibrational perturbation theory. Molecular Physics, 2007, 105, 101-109.	1.7	74
38	How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K with Large Effective Hamiltonian Resonance Treatments. Journal of Physical Chemistry A, 2021, 125, 1301-1324.	2.5	72
39	Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations. Journal of Chemical Physics, 2015, 142, 064108.	3.0	71
40	A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation. Theoretica Chimica Acta, 1996, 93, 303-313.	0.8	70
41	A new approach to approximate equation-of-motion coupled cluster with triple excitations. Journal of Chemical Physics, 2016, 145, 124102.	3.0	70
42	Restricted openâ€shell Hartree–Fockâ€based manyâ€body perturbation theory: Theory and application of energy and gradient calculations. Journal of Chemical Physics, 1992, 97, 6606-6620.	3.0	68
43	On the vibronic level structure in the NO ₃ radical: II. Adiabatic calculation of the infrared spectrum. Molecular Physics, 2009, 107, 1059-1075.	1.7	65
44	Potential nonrigidity of the NO3 radical. Journal of Chemical Physics, 1991, 94, 4084-4087.	3.0	60
45	Spontaneous and Selective Formation of HSNO, a Crucial Intermediate Linking H ₂ S and Nitroso Chemistries. Journal of the American Chemical Society, 2016, 138, 11441-11444.	13.7	60
46	Application of an equation-of-motion coupled cluster method including higher-order corrections to potential energy surfaces of radicals. Journal of Chemical Physics, 1999, 111, 8275-8285.	3.0	59
47	Correlated studies of infrared intensities. Journal of Chemical Physics, 1989, 90, 3241-3249.	3.0	58
48	A Discussion of Some Problems Associated with the Quantum Mechanical Treatment of Open-Shell Molecules. Advances in Chemical Physics, 2003, , 101-146.	0.3	58
49	Analytic first and second derivatives for the CCSDT-n (n = $1\hat{a}$ ="3) models: a first step towards the efficient calculation of CCSDT properties. Physical Chemistry Chemical Physics, 2000, 2, 2047-2060.	2.8	56
50	Chirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions. Physical Chemistry Chemical Physics, 2014, 16, 15739-15751.	2.8	54
51	Does chlorine peroxide exhibit a strong ultraviolet absorption near 250 nm?. Journal of Chemical Physics, 1993, 98, 9335-9339.	3.0	53
52	The Molecular Structure of <i>gauche</i> â€1,3â€Butadiene: Experimental Establishment of Nonâ€planarity. Angewandte Chemie - International Edition, 2018, 57, 1821-1825.	13.8	46
53	Anharmonic force fields from analytic CCSD(T) second derivatives: HOF and F2O. Journal of Chemical Physics, 1999, 110, 3687-3696.	3.0	45
54	Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites. Journal of Chemical Physics, 2013, 139, 224304.	3.0	45

#	Article	IF	CITATIONS
55	Quantitative analysis of Fermi resonances by harmonic derivatives of perturbation theory corrections. Molecular Physics, 2009, 107, 213-222.	1.7	44
56	Towards highly accurate <i>ab initio</i> thermochemistry of larger systems: Benzene. Journal of Chemical Physics, 2011, 135, 044513.	3.0	44
57	Harmonic vibrational frequencies and infrared intensities from analytic fourthâ€order manyâ€body perturbation theory gradients. Journal of Chemical Physics, 1991, 94, 404-413.	3.0	42
58	A master equation simulation for the •OH + CH3OH reaction. Journal of Chemical Physics, 2019, 150, 084105.	3.0	42
59	Molecular structure determination: Equilibrium structure of pyrimidine (<i>m</i> -C4H4N2) from rotational spectroscopy (<i>r e</i> SE) and high-level <i>ab initio</i> calculation (<i i="" r<="">) Tj ETQq1 1 0.78-2020, 152, 104303.</i>	43.14 rgBT	/Averlock
60	Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods. Journal of Chemical Physics, 2018, 148, 044108.	3.0	40
61	Analytic ROHF–MBPT(2) second derivatives. Journal of Chemical Physics, 1992, 97, 7825-7828.	3.0	39
62	High-Accuracy Extrapolated ab Initio Thermochemistry of the Propargyl Radical and the Singlet C ₃ H ₂ Carbenes. Journal of Physical Chemistry A, 2009, 113, 12447-12453.	2.5	39
63	Communication: Thermal unimolecular decomposition of syn-CH3CHOO: A kinetic study. Journal of Chemical Physics, 2016, 145, 131102.	3.0	38
64	Exhaustive Product Analysis of Three Benzene Discharges by Microwave Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 5170-5181.	2.5	38
65	Separability properties of reduced and effective density matrices in the equationâ€ofâ€motion coupled cluster method. Journal of Chemical Physics, 1994, 101, 8928-8937.	3.0	37
66	Discovery of a Missing Link: Detection and Structure of the Elusive Disilicon Carbide Cluster. Journal of Physical Chemistry Letters, 2015, 6, 2107-2111.	4.6	36
67	A coupledâ€cluster study of the ground state of C+3. Journal of Chemical Physics, 1991, 94, 4320-4327.	3.0	35
68	Ab initiodetermination of the heat of formation of ketenyl (HCCO) and ethynyl (CCH) radicals. Molecular Physics, 2005, 103, 2159-2168.	1.7	33
69	A Steady-State Approximation to the Two-Dimensional Master Equation for Chemical Kinetics Calculations. Journal of Physical Chemistry A, 2015, 119, 7627-7636.	2.5	33
70	Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide. Journal of Physical Chemistry A, 2017, 121, 8799-8806.	2.5	33
71	On the HCN – HNC Energy Difference. Journal of Physical Chemistry A, 2015, 119, 10929-10934.	2.5	32
72	Precise equilibrium structure determination of hydrazoic acid (HN3) by millimeter-wave spectroscopy. Journal of Chemical Physics, 2015, 143, 104310.	3.0	31

#	Article	IF	CITATIONS
73	Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate. Journal of Physical Chemistry A, 2017, 121, 4658-4677.	2.5	31
74	Structural and Thermodynamic Analysis of a Three-Component Assembly Forming <i>ortho</i> -lminophenylboronate Esters. Journal of Organic Chemistry, 2016, 81, 8319-8330.	3.2	30
75	Jet cooled cavity ringdown spectroscopy of the AËœ2E″â†XËœ2A2′ transition of the NO3 radical. Journal of Chemical Physics, 2015, 142, 184305.	3.0	29
76	Quantitative vibronic coupling calculations: the formyloxyl radical. Theoretical Chemistry Accounts, 2011, 129, 527-543.	1.4	28
77	On the vibronic level structure in the NO3 radical: Part III. Observation of intensity borrowing via ground state mixing. Physical Chemistry Chemical Physics, 2009, 11, 4742.	2.8	27
78	An unusually large nonadiabatic error in the BNB molecule. Journal of Chemical Physics, 2010, 133, 174309.	3.0	27
79	Chirped-Pulse Fourier Transform Microwave Spectroscopy Coupled with a Flash Pyrolysis Microreactor: Structural Determination of the Reactive Intermediate Cyclopentadienone. Journal of Physical Chemistry Letters, 2014, 5, 2201-2207.	4.6	27
80	Electron-Correlated Methods for the Calculation of NMR Chemical Shifts. , 2004, , 123-139.		25
81	Photoelectron Spectroscopy of the Methide Anion: Electron Affinities of [•] CH ₃ and [•] CD ₃ and Inversion Splittings of CH ₃ [–] . Journal of the American Chemical Society, 2015, 137, 12939-12945.	13.7	25
82	Quantifying Hydrogenâ€Bond Populations in Dimethyl Sulfoxide/Water Mixtures. Angewandte Chemie, 2017, 129, 11533-11537.	2.0	25
83	High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K. Journal of Chemical Physics, 2017, 147, 152704.	3.0	24
84	Accuracy of Coupled Cluster Excited State Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2018, 14, 5859-5869.	5.3	24
85	The global minimum structure of SiC3: The controversy continues. Journal of Chemical Physics, 2002, 116, 9151-9153.	3.0	23
86	Pyrolysis of Cyclopentadienone: Mechanistic Insights from a Direct Measurement of Product Branching Ratios. Journal of Physical Chemistry A, 2015, 119, 7222-7234.	2.5	23
87	Direct measurements of DOCO isomers in the kinetics of OD + CO. Science Advances, 2018, 4, eaao4777.	10.3	22
88	Factors Contributing to the Accuracy of Harmonic Force Field Calculations for Water. Journal of Chemical Theory and Computation, 2007, 3, 1267-1274.	5.3	21
89	Revisitation of Nonorthogonal Spin Adaptation in Coupled Cluster Theory. Journal of Chemical Theory and Computation, 2013, 9, 2567-2572.	5.3	21
90	Communication: The ground electronic state of Si2C: Rovibrational level structure, quantum monodromy, and astrophysical implications. Journal of Chemical Physics, 2015, 142, 231101.	3.0	21

#	Article	IF	Citations
91	Semiclassical Transition-State Theory Based on Fourth-Order Vibrational Perturbation Theory: The Symmetrical Eckart Barrier. Journal of Physical Chemistry Letters, 2016, 7, 2708-2713.	4.6	21
92	Analytic Evaluation of Second Derivatives of the Energy: Computational Strategies for the CCSD and CCSD(T) Approximations. Recent Advances in Computational, 1997, , 49-79.	0.8	20
93	Vibrational Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy. Journal of Chemical Theory and Computation, 2011, 7, 1428-1442.	5.3	20
94	Unimolecular Reaction of Methyl Isocyanide to Acetonitrile: A High-Level Theoretical Study. Journal of Physical Chemistry Letters, 2018, 9, 2532-2538.	4.6	20
95	Ab initio thermal rate coefficients for H + NH ₃ ⇌ H ₂ + NH ₂ . International Journal of Chemical Kinetics, 2019, 51, 321-328.	1.6	20
96	Precise equilibrium structure determination of thiophene (<i>c</i> -C4H4S) by rotational spectroscopyâ€"Structure of a five-membered heterocycle containing a third-row atom. Journal of Chemical Physics, 2021, 154, 244310.	3.0	20
97	Laser spectroscopy of Si3C. Journal of Chemical Physics, 2005, 122, 124314.	3.0	19
98	Quantum-state-controlled reactions between molecular radicals and ions. Physical Review A, 2018, 98,	2.5	19
99	Ground and low-lying excited states of propadienylidene (H2C=C=C:) obtained by negative ion photoelectron spectroscopy. Journal of Chemical Physics, 2012, 136, 134312.	3.0	18
100	On the equilibrium bond length of ammonia in the first excited singlet state. Journal of Chemical Physics, 1995, 102, 1096-1097.	3.0	17
101	Gasâ€Phase Formation of the Disilavinylidene (H ₂ SiSi) Transient. Angewandte Chemie - International Edition, 2017, 56, 1264-1268.	13.8	17
102	Pragmatic Solution for a Fully <i>E</i> , <i>J</i> -Resolved Master Equation. Journal of Physical Chemistry A, 2020, 124, 2907-2918.	2.5	17
103	Theoretical prediction of magnetic exchange coupling constants from broken-symmetry coupled cluster calculations. Journal of Chemical Physics, 2020, 152, 234115.	3.0	17
104	Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks. Journal of Chemical Physics, 2021, 154, 114115.	3.0	17
105	Structure, energetics, and vibrational spectra of beryllium borohydride isomers. Journal of Chemical Physics, 1988, 88, 5726-5734.	3.0	16
106	Relatively Selective Production of the Simplest Criegee Intermediate in a CH ₄ /O ₂ Electric Discharge: Kinetic Analysis of a Plausible Mechanism. Journal of Physical Chemistry A, 2015, 119, 7197-7204.	2.5	16
107	The ionisation energy of cyclopentadienone: a photoelectron–photoion coincidence study. Molecular Physics, 2015, 113, 2350-2358.	1.7	16
108	Photodissociation of dicarbon: How nature breaks an unusual multiple bond. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16

#	Article	IF	CITATIONS
109	Point group symmetry and cartesian force constant redundancy. International Journal of Quantum Chemistry, 1991, 39, 19-29.	2.0	15
110	A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation (Erratum). Theoretica Chimica Acta, 1997, 95, 97-98.	0.8	15
111	Quantitative vibronic coupling calculations. The visible spectrum of propadienylidene. Faraday Discussions, 2011, 150, 331.	3.2	15
112	Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. Journal of Chemical Physics, 2017, 146, 224309.	3.0	15
113	Broadband Microwave Spectroscopy of 2-Furanyloxy Radical: Primary Pyrolysis Product of the Second-Generation Biofuel 2-Methoxyfuran. Journal of Physical Chemistry A, 2018, 122, 6879-6885.	2.5	15
114	Barrier to Methyl Internal Rotation of Cis- andTrans-2-Methylvinoxy Radicals in the X̃(2Aâ€~Ââ€~) and B̃(2Aâ€~Æ States:Â Experiment and Theory. Journal of Physical Chemistry A, 2000, 104, 9906-9913.	\â€~) 2.5	14
115	A Highly-Efficient Implementation of the Doktorov Recurrence Equations for Franck–Condon Calculations. Journal of Chemical Theory and Computation, 2016, 12, 728-739.	5.3	14
116	Electron-Withdrawing Effects in the Photodissociation of CH ₂ ICl To Form CH ₂ Cl Radical, Simultaneously Viewed Through the Carbon K and Chlorine L _{2,3} X-ray Edges. Journal of the American Chemical Society, 2018, 140, 13360-13366.	13.7	14
117	Precise equilibrium structure of thiazole (<i><c i="">-C3H3NS) from twenty-four isotopologues. Journal of Chemical Physics, 2021, 155, 054302.</c></i>	3.0	14
118	Relativistic coupled-cluster calculations on XeF6: Delicate interplay between electron-correlation and basis-set effects. Journal of Chemical Physics, 2015, 142, 224309.	3.0	13
119	Pyrolysis of the Simplest Carbohydrate, Glycolaldehyde (CHOâ^'CH ₂ OH), and Glyoxal in a Heated Microreactor. Journal of Physical Chemistry A, 2016, 120, 2161-2172.	2.5	13
120	The gas-phase structure of the asymmetric, <i>trans</i> -dinitrogen tetroxide (N2O4), formed by dimerization of nitrogen dioxide (NO2), from rotational spectroscopy and <i>ab initio</i> quantum chemistry. Journal of Chemical Physics, 2017, 146, 134305.	3.0	13
121	Spectroscopy of Ethylenedione and Ethynediolide: A Reinvestigation. Angewandte Chemie - International Edition, 2018, 57, 5394-5397.	13.8	13
122	Quantum-state-specific reaction rate measurements for the photo-induced reaction Ca ⁺ + O ₂ â†' CaO ⁺ + O. Molecular Physics, 2019, 117, 3036-3042.	1.7	13
123	High-Resolution Photoelectron Spectroscopy of Cryogenically Cooled NO ₃ 1 Journal of Physical Chemistry Letters, 2020, 11, 395-400.	4.6	13
124	Vibronically coupled states: computational considerations and characterisation of vibronic and rovibronic spectroscopic parameters. International Reviews in Physical Chemistry, 2021, 40, 165-298.	2.3	13
125	Three-Dimensional Master Equation (3DME) Approach. Journal of Physical Chemistry A, 2018, 122, 7757-7767.	2.5	12
126	The equilibrium structure of the ammonium radical Rydberg ground state. Journal of Chemical Physics, 2001, 114, 9863-9865.	3.0	11

#	Article	IF	CITATIONS
127	Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor. Journal of Physical Chemistry A, 2015, 119, 12635-12647.	2.5	11
128	Pressure-Dependent Rate Constant Caused by Tunneling Effects: OH + HNO ₃ as an Example. Journal of Physical Chemistry Letters, 2020, 11, 3712-3717.	4.6	11
129	The Molecular Structure of gauche â€1,3â€Butadiene: Experimental Establishment of Nonâ€planarity. Angewandte Chemie, 2018, 130, 1839-1843.	2.0	10
130	Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations. Journal of the American Society for Mass Spectrometry, 2018, 29, 1791-1801.	2.8	10
131	Semi-Experimental Equilibrium (<i>r</i> _e ^{SE}) and Theoretical Structures of Pyridazine (<i>o</i> -C ₄ H ₄ N ₂). Journal of Physical Chemistry A, 2021, 125, 7976-7987.	2.5	10
132	Reduced dimension rovibrational variational calculations of the S1 state of C2H2. II. The S1 rovibrational manifold and the effects of isomerization. Journal of Chemical Physics, 2014, 140, 024313.	3.0	9
133	Communication: Helium nanodroplet isolation and rovibrational spectroscopy of hydroxymethylene. Journal of Chemical Physics, 2014, 140, 171102.	3.0	9
134	Semiclassical transition state theory/master equation kinetics of HO + CO: Performance evaluation. International Journal of Chemical Kinetics, 2020, 52, 1022-1045.	1.6	9
135	Spectroscopy of Ethylenedione and Ethynediolide: A Reinvestigation. Angewandte Chemie, 2018, 130, 5492-5495.	2.0	8
136	The Hunt for Elusive Molecules: Insights from Joint Theoretical and Experimental Investigations. Chemistry - A European Journal, 2019, 25, 7243-7258.	3.3	8
137	PAH Growth in Flames and Space: Formation of the Phenalenyl Radical. Journal of Physical Chemistry A, 2022, 126, 101-108.	2.5	8
138	Computation of quadratic electric dipole moment functions. Journal of Chemical Physics, 1988, 88, 7650-7652.	3.0	7
139	Equilibrium structure of LiCCH. International Journal of Quantum Chemistry, 2000, 77, 305-310.	2.0	7
140	Spectral analyses of <i>trans</i> and <i>cis</i> -DOCO transients via comb spectroscopy. Molecular Physics, 2018, 116, 3710-3717.	1.7	7
141	First-Principles Calculation of Jahn–Teller Rotational Distortion Parameters. Journal of Physical Chemistry A, 2019, 123, 4990-5004.	2.5	7
142	Structural Characterization of Phenoxy Radical with Mass-Correlated Broadband Microwave Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 2919-2923.	4.6	7
143	Probing the Exit Channel of the OH + CH ₃ OH → H ₂ O + CH ₃ O Reaction by Photodetachment of CH ₃ O [–] (H ₂ O). Journal of Physical Chemistry Letters, 2022, 13, 142-148.	4.6	7
144	Coupled-cluster studies of singlet propynylidene. Molecular Physics, 1999, 96, 505-509.	1.7	6

#	Article	IF	CITATIONS
145	Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene. Journal of Chemical Physics, 2015, 142, 144309.	3.0	6
146	Directed Gas-Phase Formation of the Germaniumsilylene Butterfly Molecule (Ge(\hat{l}_4 -H ₂)Si). Journal of Physical Chemistry Letters, 2019, 10, 1264-1271.	4.6	6
147	Theoretical Rovibrational Spectroscopy of Magnesium Tricarbide–Multireference Character Thwarts a Full Analysis of All Isomers. Journal of Physical Chemistry A, 2022, 126, 4132-4146.	2.5	5
148	Using isotopologues to probe the potential energy surface of reactions of C2H2++C3H4. Journal of Chemical Physics, 2021, 154, 124310.	3.0	4
149	A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation. Theoretica Chimica Acta, 1996, 93, 303.	0.8	4
150	A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation (Erratum). Theoretica Chimica Acta, 1997, 95, 97.	0.8	3
151	Atomic isotropic hyperfine properties for first row elements (B–F) revisited. Journal of Chemical Physics, 2022, 156, 034304.	3.0	3
152	Semi-experimental equilibrium ($\langle i\rangle r\langle i\rangle e\langle i\rangle SE$) and theoretical structures of hydrazoic acid (HN3). Journal of Chemical Physics, 2022, 157, .	3.0	3
153	Equilibrium Structure of the Silicon Trimer. ACS Symposium Series, 2007, , 193-200.	0.5	O
154	Titelbild: Quantifying Hydrogenâ€Bond Populations in Dimethyl Sulfoxide/Water Mixtures (Angew.) Tj ETQq0 0 C) rgBT /Ov 2.0	verlock 10 Tf 5
155	Innentitelbild: Spectroscopy of Ethylenedione and Ethynediolide: A Reinvestigation (Angew. Chem.) Tj ETQq $1\ 1\ C$).784314	rgBT /Overloc
156	Frontispiece: The Hunt for Elusive Molecules: Insights from Joint Theoretical and Experimental Investigations. Chemistry - A European Journal, 2019, 25, .	3.3	0
157	A VSEPR-inspired force field for determining molecular properties of PF ₅ . Molecular Physics, 2019, 117, 1344-1350.	1.7	O
158	Bob Cave Memorial. Journal of Physical Chemistry A, 2021, 125, 4037-4038.	2.5	0
159	Thermal Decomposition of CH3O: A Curious Case of Pressure-Dependent Tunneling Effects. Journal of Physical Chemistry A, 2021, 125, 6761-6771.	2.5	O