Linglong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081363/publications.pdf

Version: 2024-02-01

27	738	14	26
papers	citations	h-index	g-index
28	28	28	1488
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Highâ€Performance Strain of Leadâ€Free Relaxorâ€Ferroelectric Piezoceramics by the Morphotropic Phase Boundary Modification. Advanced Functional Materials, 2022, 32, .	14.9	16
2	Engineering of multiferroic BiFeO3 grain boundaries with head-to-head polarization configurations. Science Bulletin, 2021, 66, 771-776.	9.0	6
3	Enhanced Photoresponse in GeSeâ€Based Phototransistors by Ferroelectric Gating. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100111.	2.4	2
4	Construction of ternary core-shell Fe3O4@BaTiO3/PVDF nanocomposites with enhanced permittivity and breakdown strength for energy storage. Materials Chemistry and Physics, 2021, 265, 124505.	4.0	12
5	Strainâ€Engineered Nanoâ€Ferroelectrics for Highâ€Efficiency Piezocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 16019-16026.	13.8	96
6	Strainâ€Engineered Nanoâ€Ferroelectrics for Highâ€Efficiency Piezocatalytic Overall Water Splitting. Angewandte Chemie, 2021, 133, 16155-16162.	2.0	16
7	Quantitative investigation of electromechanical coupling of potassium sodium niobate-based thin films. Ceramics International, 2020, 46, 9218-9224.	4.8	0
8	Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. Npj Computational Materials, 2020, 6, .	8.7	2
9	Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO3–CoFe2O4 thin films. Journal of Materials Chemistry C, 2020, 8, 3527-3535.	5.5	9
10	Reversible Domain-Wall-Motion-Induced Low-Hysteretic Piezoelectric Response in Ferroelectrics. Journal of Physical Chemistry C, 2019, 123, 15434-15440.	3.1	9
11	Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. Science Advances, 2018, 4, eaap8672.	10.3	54
12	Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides. Journal of Applied Physics, 2018, 123, .	2.5	29
13	Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensileâ€ 5 trained Film. Advanced Electronic Materials, 2017, 3, 1600508.	5.1	7
14	Studies on dielectric, optical, magnetic, magnetic domain structure, and resistance switching characteristics of highly c-axis oriented NZFO thin films. Journal of Applied Physics, 2017, 122, 033902.	2.5	13
15	Field enhancement of electronic conductance at ferroelectric domain walls. Nature Communications, 2017, 8, 1318.	12.8	32
16	Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. Applied Physics Letters, $2016,108,$.	3.3	3
17	Novel lead-free ferroelectric film by ultra-small Ba _{0.8} r _{0.2} TiO ₃ nanocubes assembled for a large electrocaloric effect. Physical Chemistry Chemical Physics, 2016, 18, 29033-29040.	2.8	18
18	Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy. Micron, 2016, 88, 48-53.	2.2	6

#	Article	IF	CITATIONS
19	Single-domain multiferroic BiFeO3 films. Nature Communications, 2016, 7, 12712.	12.8	92
20	Isothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5TiO3-xBaTiO3 system. Acta Materialia, 2016, 103, 746-753.	7.9	31
21	Direct Observation of Magnetic Field Induced Ferroelectric Domain Evolution in Self-Assembled Quasi (0-3) BiFeO ₃ –CoFe ₂ O ₄ Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 442-448.	8.0	27
22	Piezoelectric properties of lead-free (Na0.5Bi0.5)0.95Ba0.05TiO3 thin films on polycrystalline nickel foils. Ceramics International, 2015, 41, S319-S322.	4.8	3
23	Anatomy of vertical heteroepitaxial interfaces reveals the memristive mechanism in Nb2O5-NaNbO3 thin films. Scientific Reports, 2015, 5, 9229.	3.3	10
24	Silver-Modified Nanosized Ferroelectrics as a Novel Photocatalyst. Small, 2015, 11, 202-207.	10.0	102
25	One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale, 2014, 6, 4513.	5.6	63
26	The enhanced magnetodielectric interaction of (1 \hat{a}) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 467 Td (x)BaTiO < sub Materials Chemistry C, 2014, 2, 2545-2551.	b>3	>–xCoFe <su 60</su
27	Ferroelastic and strain glass transition in (1-x)(Bi _{0.5} Na _{0.5})TiO ₃ -xBaTiO ₃ solid solution. Europhysics Letters, 2012, 100, 17004.	2.0	20