
## Linglong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081363/publications.pdf Version: 2024-02-01



LINCLONGL

| #  | Article                                                                                                                                                                                                                                | IF                        | CITATIONS  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|
| 1  | Silver-Modified Nanosized Ferroelectrics as a Novel Photocatalyst. Small, 2015, 11, 202-207.                                                                                                                                           | 10.0                      | 102        |
| 2  | Strainâ€Engineered Nanoâ€Ferroelectrics for Highâ€Efficiency Piezocatalytic Overall Water Splitting.<br>Angewandte Chemie - International Edition, 2021, 60, 16019-16026.                                                              | 13.8                      | 96         |
| 3  | Single-domain multiferroic BiFeO3 films. Nature Communications, 2016, 7, 12712.                                                                                                                                                        | 12.8                      | 92         |
| 4  | One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale, 2014, 6, 4513.                                                                                                                     | 5.6                       | 63         |
| 5  | The enhanced magnetodielectric interaction of (1 â~) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 587 Td (x)B<br>Materials Chemistry C, 2014, 2, 2545-2551.                                                                             | aTiO <sub<br>5.5</sub<br> | >3â€<br>60 |
| 6  | Machine learning–enabled identification of material phase transitions based on experimental data:<br>Exploring collective dynamics in ferroelectric relaxors. Science Advances, 2018, 4, eaap8672.                                     | 10.3                      | 54         |
| 7  | Field enhancement of electronic conductance at ferroelectric domain walls. Nature<br>Communications, 2017, 8, 1318.                                                                                                                    | 12.8                      | 32         |
| 8  | lsothermal phase transition and the transition temperature limitation in the lead-free (1-x)Bi0.5Na0.5TiO3-xBaTiO3 system. Acta Materialia, 2016, 103, 746-753.                                                                        | 7.9                       | 31         |
| 9  | Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides.<br>Journal of Applied Physics, 2018, 123, .                                                                                          | 2.5                       | 29         |
| 10 | Direct Observation of Magnetic Field Induced Ferroelectric Domain Evolution in Self-Assembled Quasi<br>(0-3) BiFeO <sub>3</sub> –CoFe <sub>2</sub> O <sub>4</sub> Thin Films. ACS Applied Materials &<br>Interfaces, 2016, 8, 442-448. | 8.0                       | 27         |
| 11 | Ferroelastic and strain glass transition in (1-x)(Bi <sub>0.5</sub> Na <sub>0.5</sub> )TiO <sub>3</sub><br>-xBaTiO <sub>3</sub> solid solution. Europhysics Letters, 2012, 100, 17004.                                                 | 2.0                       | 20         |
| 12 | Novel lead-free ferroelectric film by ultra-small<br>Ba <sub>0.8</sub> Sr <sub>0.2</sub> TiO <sub>3</sub> nanocubes assembled for a large electrocaloric<br>effect. Physical Chemistry Chemical Physics, 2016, 18, 29033-29040.        | 2.8                       | 18         |
| 13 | Strainâ€Engineered Nanoâ€Ferroelectrics for Highâ€Efficiency Piezocatalytic Overall Water Splitting.<br>Angewandte Chemie, 2021, 133, 16155-16162.                                                                                     | 2.0                       | 16         |
| 14 | Highâ€Performance Strain of Leadâ€Free Relaxorâ€Ferroelectric Piezoceramics by the Morphotropic Phase<br>Boundary Modification. Advanced Functional Materials, 2022, 32, .                                                             | 14.9                      | 16         |
| 15 | Studies on dielectric, optical, magnetic, magnetic domain structure, and resistance switching characteristics of highly c-axis oriented NZFO thin films. Journal of Applied Physics, 2017, 122, 033902.                                | 2.5                       | 13         |
| 16 | Construction of ternary core-shell Fe3O4@BaTiO3/PVDF nanocomposites with enhanced permittivity and breakdown strength for energy storage. Materials Chemistry and Physics, 2021, 265, 124505.                                          | 4.0                       | 12         |
| 17 | Anatomy of vertical heteroepitaxial interfaces reveals the memristive mechanism in Nb2O5-NaNbO3 thin films. Scientific Reports, 2015, 5, 9229.                                                                                         | 3.3                       | 10         |
| 18 | Reversible Domain-Wall-Motion-Induced Low-Hysteretic Piezoelectric Response in Ferroelectrics.<br>Journal of Physical Chemistry C, 2019, 123, 15434-15440.                                                                             | 3.1                       | 9          |

Linglong Li

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO3–CoFe2O4<br>thin films. Journal of Materials Chemistry C, 2020, 8, 3527-3535. | 5.5 | 9         |
| 20 | Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensile‧trained Film.<br>Advanced Electronic Materials, 2017, 3, 1600508.                  | 5.1 | 7         |
| 21 | Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe<br>force microscopy. Micron, 2016, 88, 48-53.                     | 2.2 | 6         |
| 22 | Engineering of multiferroic BiFeO3 grain boundaries with head-to-head polarization configurations.<br>Science Bulletin, 2021, 66, 771-776.                              | 9.0 | 6         |
| 23 | Piezoelectric properties of lead-free (Na0.5Bi0.5)0.95Ba0.05TiO3 thin films on polycrystalline nickel foils. Ceramics International, 2015, 41, S319-S322.               | 4.8 | 3         |
| 24 | Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. Applied Physics Letters, 2016, 108, .                         | 3.3 | 3         |
| 25 | Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic<br>Piezoresponse Force Spectroscopy. Npj Computational Materials, 2020, 6, .    | 8.7 | 2         |
| 26 | Enhanced Photoresponse in GeSeâ€Based Phototransistors by Ferroelectric Gating. Physica Status<br>Solidi - Rapid Research Letters, 2021, 15, 2100111.                   | 2.4 | 2         |
| 27 | Quantitative investigation of electromechanical coupling of potassium sodium niobate-based thin films. Ceramics International, 2020, 46, 9218-9224.                     | 4.8 | Ο         |