
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081085/publications.pdf Version: 2024-02-01

Τλέλομι διίδλ

#	Article	IF	CITATIONS
1	Emerging cardioprotective mechanisms of vitamin B6: a narrative review. European Journal of Nutrition, 2022, 61, 605-613.	3.9	13
2	Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Reports, 2021, 34, 108887.	6.4	67
3	Caspaseâ€7 mediates caspaseâ€1â€induced apoptosis independently of Bid. Microbiology and Immunology, 2020, 64, 143-152.	1.4	26
4	Novel preventive mechanisms of vitamin B6 against inflammation, inflammasome, and chronic diseases. , 2020, , 283-299.		9
5	Gasdermin Dâ€independent release of interleukinâ€1 <i>β </i> by living macrophages in response to mycoplasmal lipoproteins and lipopeptides. Immunology, 2020, 161, 114-122.	4.4	8
6	Bidirectional crosstalk between neutrophils and adipocytes promotes adipose tissue inflammation. FASEB Journal, 2019, 33, 11821-11835.	0.5	46
7	ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism. Mucosal Immunology, 2019, 12, 1092-1103.	6.0	16
8	Development of a Water-Soluble Indolylmaleimide Derivative IM-93 Showing Dual Inhibition of Ferroptosis and NETosis. ACS Medicinal Chemistry Letters, 2019, 10, 1272-1278.	2.8	6
9	Caspase-1 initiates apoptosis in the absence of gasdermin D. Nature Communications, 2019, 10, 2091.	12.8	301
10	Involvement of p38MAPK in Impaired Neutrophil Bactericidal Activity of Hemodialysis Patients. Therapeutic Apheresis and Dialysis, 2018, 22, 345-354.	0.9	1
11	Characterization of Innate and Adaptive Immune Responses in PYNOD-Deficient Mice. ImmunoHorizons, 2018, 2, 129-141.	1.8	2
12	Vitamin B6 Prevents IL-1β Protein Production by Inhibiting NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 2016, 291, 24517-24527.	3.4	81
13	NLRP3 Mediates NF-κB Activation and Cytokine Induction in Microbially Induced and Sterile Inflammation. PLoS ONE, 2015, 10, e0119179.	2.5	56
14	Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. International Immunology, 2013, 25, 363-372.	4.0	93
15	Fas Ligand Has a Greater Impact than TNF-α on Apoptosis and Inflammation in Ischemic Acute Kidney Injury. Nephron Extra, 2012, 2, 27-38.	1.1	18
16	Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunology, Immunotherapy, 2012, 61, 667-676.	4.2	80
17	Caspase-1 Protein Induces Apoptosis-associated Speck-like Protein Containing a Caspase Recruitment Domain (ASC)-mediated Necrosis Independently of Its Catalytic Activity. Journal of Biological Chemistry, 2011, 286, 33963-33972.	3.4	50
18	Activation of ASC induces apoptosis or necrosis, depending on the cell type, and causes tumor eradication. Cancer Science, 2010, 101, 1822-1827.	3.9	23

#	Article	IF	CITATIONS
19	Anti-Inflammatory Activity of PYNOD and Its Mechanism in Humans and Mice. Journal of Immunology, 2010, 184, 5874-5884.	0.8	80
20	Mechanism and Repertoire of ASC-Mediated Gene Expression. Journal of Immunology, 2009, 182, 7655-7662.	0.8	40
21	Disease-associated mutations in CIAS1 induce cathepsin B–dependent rapid cell death of human THP-1 monocytic cells. Blood, 2007, 109, 2903-2911.	1.4	97
22	IL-17-Mediated Regulation of Innate and Acquired Immune Response against Pulmonary <i>Mycobacterium bovis</i> Bacille Calmette-GueÌrin Infection. Journal of Immunology, 2007, 178, 3786-3796.	0.8	466
23	Caspase-8- and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 production. FEBS Journal, 2007, 274, 2376-2384.	4.7	35
24	General Nature of the STAT3-Activated Anti-Inflammatory Response. Journal of Immunology, 2006, 177, 7880-7888.	0.8	197
25	Fas-associated factor 1 is a negative regulator of PYRIN-containing Apaf-1-like protein 1. International Immunology, 2006, 18, 1701-1706.	4.0	20
26	ASC-mediated NF-κB Activation Leading to Interleukin-8 Production Requires Caspase-8 and Is Inhibited by CLARP. Journal of Biological Chemistry, 2005, 280, 15122-15130.	3.4	56
27	PYPAF3, a PYRIN-containing APAF-1-like Protein, Is a Feedback Regulator of Caspase-1-dependent Interleukin-1β Secretion. Journal of Biological Chemistry, 2005, 280, 21720-21725.	3.4	131
28	Fas Ligand Induces Cell-Autonomous IL-23 Production in Dendritic Cells, a Mechanism for Fas Ligand-Induced IL-17 Production. Journal of Immunology, 2005, 175, 8024-8031.	0.8	20
29	Different Procarcinogenic Potentials of Lymphocyte Subsets in a Transgenic Mouse Model of Chronic Hepatitis B. Cancer Research, 2004, 64, 3326-3333.	0.9	33
30	Fas Ligand Induces Cell-autonomous NF-κB Activation and Interleukin-8 Production by a Mechanism Distinct from That of Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2004, 279, 46415-46423.	3.4	89
31	PYNOD, a novel Apafâ€1/CED4â€like protein is an inhibitor of ASC and caspaseâ€1. International Immunology, 2004, 16, 777-786.	4.0	107
32	Involvement of IL-17 in Fas ligand-induced inflammation. International Immunology, 2004, 16, 1099-1108.	4.0	53
33	Pathogen-Associated Molecular Patterns Sensitize Macrophages to Fas Ligand-Induced Apoptosis and IL-1Î ² Release. Journal of Immunology, 2003, 171, 1868-1874.	0.8	47
34	Prevention and Induction of Autoimmune Exocrinopathy Is Dependent on Pathogenic Autoantigen Cleavage in Murine Sjol^gren's Syndrome. Journal of Immunology, 2002, 169, 1050-1057.	0.8	55
35	Prevention of Hepatocellular Carcinoma Development Associated with Chronic Hepatitis by Anti-Fas Ligand Antibody Therapy. Journal of Experimental Medicine, 2002, 196, 1105-1111.	8.5	73
36	Toll-like receptor 2 contributes to liver injury by Salmonella infection through Fas ligand expression on NKT cells in mice. Gastroenterology, 2002, 123, 1265-1277.	1.3	49

#	Article	IF	CITATIONS
37	Requirement of Fas expression in B cells for tolerance induction. European Journal of Immunology, 2002, 32, 223-230.	2.9	29
38	The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity. European Journal of Immunology, 2001, 31, 2504-2511.	2.9	82
39	Possible Role of Organ-Specific Autoantigen for Fas Ligand-Mediated Activation-Induced Cell Death in Murine Sjol^gren's Syndrome. Journal of Immunology, 2001, 167, 6031-6037.	0.8	31
40	ln vitro prevention of cellâ€mediated xenoâ€graft rejection via the Fas/FasLâ€pathway in CrmAâ€transducted porcine kidney cells. Xenotransplantation, 2001, 8, 115-124.	2.8	8
41	Therapeutic effect of an anti-Fas ligand mAb on lethal graft-versus-host disease. International Immunology, 1999, 11, 925-931.	4.0	64
42	Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. Journal of Clinical Investigation, 1999, 104, 13-19.	8.2	319
43	Caspase 1-independent IL-1Î ² release and inflammation induced by the apoptosis inducer Fas ligand. Nature Medicine, 1998, 4, 1287-1292.	30.7	365
44	Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis. Arthritis and Rheumatism, 1998, 41, 657-662.	6.7	100
45	Membrane Fas Ligand Kills Human Peripheral Blood T Lymphocytes, and Soluble Fas Ligand Blocks the Killing. Journal of Experimental Medicine, 1997, 186, 2045-2050.	8.5	477
46	Why do defects in the Fas-Fas ligand system cause autoimmunity?. Journal of Allergy and Clinical Immunology, 1997, 100, S97-S101.	2.9	50
47	Requirement for the CD95 Receptor-Ligand Pathway in c-Myc-Induced Apoptosis. Science, 1997, 278, 1305-1309.	12.6	334
48	Essential roles of the Fas ligand in the development of hepatitis. Nature Medicine, 1997, 3, 409-413.	30.7	492
49	Enhanced and accelerated lymphoproliferation in Fas-null mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2131-2136.	7.1	197
50	Fas ligand in human serum. Nature Medicine, 1996, 2, 317-322.	30.7	685
51	Swapping between Fas and Granulocyte Colony-stimulating Factor Receptor. Journal of Biological Chemistry, 1996, 271, 17555-17560.	3.4	20
52	Fas and Fas ligand: lpr and gld mutations. Trends in Immunology, 1995, 16, 39-43.	7.5	872
53	Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody Journal of Experimental Medicine, 1995, 181, 485-491.	8.5	206
54	Expression of Fas in B cells of the mouse germinal center and Fas-dependent killing of activated B cells. International Immunology, 1995, 7, 1949-1956.	4.0	69

#	Article	IF	CITATIONS
55	Expression of the Fas ligand in cells of T cell lineage. Journal of Immunology, 1995, 154, 3806-13.	0.8	471
56	Purification and characterization of the Fas-ligand that induces apoptosis Journal of Experimental Medicine, 1994, 179, 873-879.	8.5	522
57	Generalized lymphoproliferative disease in mice, caused by a point mutation in the fas ligand. Cell, 1994, 76, 969-976.	28.9	1,514
58	Human Fas ligand: gene structure, chromosomal location and species specificity. International Immunology, 1994, 6, 1567-1574.	4.0	424
59	Lethal effect of the anti-Fas antibody in mice. Nature, 1993, 364, 806-809.	27.8	1,899
60	Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family. Cell, 1993, 75, 1169-1178.	28.9	2,478
61	Interleukin 7: its pleiotropic biological activities. Advances in Neuroimmunology, 1992, 2, 99-108.	1.8	1
62	Tumor-specific T Cell Lines: Capacity to Proliferate and Produce Interleukin 2 in Response to Various Forms of Tumor Antigens. Japanese Journal of Cancer Research, 1992, 83, 184-193.	1.7	2
63	Identification of a Novel Thymocyte Growth Factor Derived from B Cell Lymphomas. Advances in Experimental Medicine and Biology, 1991, 292, 115-120.	1.6	5
64	Identification of a novel thymocyte growth-promoting factor derived from B cell lymphomas. Cellular Immunology, 1990, 129, 228-240.	3.0	87
65	IL-7 is a growth and maintenance factor for mature and immature thymocyte subsets. International Immunology, 1989, 1, 526-531.	4.0	170
66	Biological activity of recombinant murine interleukin-6 in interleukin-1 T cell assays. Journal of Immunological Methods, 1989, 120, 173-178.	1.4	29
67	Separation of the Tumor Rejection Antigen of Rous Sarcoma Virus-induced Murine Fibrosarcoma. Japanese Journal of Cancer Research, 1988, 79, 365-374.	1.7	9
68	The Activation of L3T4+ Helper T Cells Assisting the Generation of Anti-Tumor Lyt-2+ Cytotoxic T Lymphocytes: Requirement of 1a-Positive Antigen-Presenting Cells for Processing and Presentation of Tumor Antigens. Journal of Leukocyte Biology, 1987, 42, 632-641.	3.3	26