
## Wolff-Michael Roth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2081064/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Science education as/for participation in the community. Science Education, 2004, 88, 263-291.                                                                                          | 3.0 | 324       |
| 2  | Rethinking Scientific Literacy. , 0, , .                                                                                                                                                |     | 285       |
| 3  | Physics students' epistemologies and views about knowing and learning. Journal of Research in Science Teaching, 1994, 31, 5-30.                                                         | 3.3 | 188       |
| 4  | Prevalence, function, and structure of photographs in high school biology textbooks. Journal of<br>Research in Science Teaching, 2003, 40, 1089-1114.                                   | 3.3 | 170       |
| 5  | Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 1999, 36, 977-1019.              | 3.3 | 168       |
| 6  | The Social Construction of Scientific Concepts or the Concept Map as Device and Tool Thinking in High Conscription for Social School Science. Science Education, 1992, 76, 531-557.     | 3.0 | 162       |
| 7  | The concept map as a tool for the collaborative construction of knowledge: A microanalysis of high school physics students. Journal of Research in Science Teaching, 1993, 30, 503-534. | 3.3 | 162       |
| 8  | Experimenting in a constructivist high school physics laboratory. Journal of Research in Science<br>Teaching, 1994, 31, 197-223.                                                        | 3.3 | 159       |
| 9  | Teacher questioning in an open-inquiry learning environment: Interactions of context, content, and student responses. Journal of Research in Science Teaching, 1996, 33, 709-736.       | 3.3 | 130       |
| 10 | Learning science through technological design. Journal of Research in Science Teaching, 2001, 38,<br>768-790.                                                                           | 3.3 | 130       |
| 11 | From ?truth? to ?invented reality?: A discourse analysis of high school physics students' talk about scientific knowledge. Journal of Research in Science Teaching, 1997, 34, 145-179.  | 3.3 | 123       |
| 12 | Where IS the Context in Contextual Word Problem?: Mathematical Practices and Products in Grade 8<br>Students' Answers to Story Problems. Cognition and Instruction, 1996, 14, 487-527.  | 2.9 | 121       |
| 13 | Contradictions in theorizing and implementing communities in education. Educational Research Review, 2006, 1, 27-40.                                                                    | 7.8 | 105       |
| 14 | Keeping the local local: Recalibrating the status of science and traditional ecological knowledge<br>(TEK) in education. Science Education, 2007, 91, 926-947.                          | 3.0 | 103       |
| 15 | Why may students fail to learn from demonstrations? A social practice perspective on learning in physics. Journal of Research in Science Teaching, 1997, 34, 509-533.                   | 3.3 | 102       |
| 16 | Coteaching: Creating resources for learning and learning to teach chemistry in urban high schools.<br>Journal of Research in Science Teaching, 2004, 41, 882-904.                       | 3.3 | 101       |
| 17 | Affordances of computers in teacher-student interactions: The case of interactive physicsâ,,¢. Journal of Research in Science Teaching, 1995, 32, 329-347.                              | 3.3 | 100       |
| 18 | Graphing: Cognitive ability or practice?. Science Education, 1997, 81, 91-106.                                                                                                          | 3.0 | 94        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Emotion at Work: A Contribution to Third-Generation Cultural-Historical Activity Theory. Mind,<br>Culture, and Activity, 2007, 14, 40-63.                                                          | 1.9 | 91        |
| 20 | From activity to gestures and scientific language. Journal of Research in Science Teaching, 2001, 38, 103-136.                                                                                     | 3.3 | 89        |
| 21 | From gesture to scientific language. Journal of Pragmatics, 2000, 32, 1683-1714.                                                                                                                   | 1.5 | 87        |
| 22 | Making sense of photographs. Science Education, 2005, 89, 219-241.                                                                                                                                 | 3.0 | 86        |
| 23 | Differential Participation During Science Conversations: The Interaction of Focal Artifacts, Social Configurations, and Physical Arrangements. Journal of the Learning Sciences, 1999, 8, 293-347. | 2.9 | 85        |
| 24 | Situated cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 463-478.                                                                                                          | 2.8 | 85        |
| 25 | >unDELETE science education:/lives/work/voices. Journal of Research in Science Teaching, 1998, 35, 399-421.                                                                                        | 3.3 | 80        |
| 26 | Toward a Theory of <i>Experience</i> . Science Education, 2014, 98, 106-126.                                                                                                                       | 3.0 | 79        |
| 27 | Becoming-in-the-classroom: a case study of teacher development through coteaching. Teaching and<br>Teacher Education, 1999, 15, 771-784.                                                           | 3.2 | 77        |
| 28 | Mathematization of experience in a grade 8 open-inquiry environment: An introduction to the representational practices of science. Journal of Research in Science Teaching, 1994, 31, 293-318.     | 3.3 | 72        |
| 29 | Lessons on and from the dihybrid cross: An activity-theoretical study of learning in coteaching.<br>Journal of Research in Science Teaching, 2002, 39, 253-282.                                    | 3.3 | 68        |
| 30 | Intercorporeality and ethical commitment: an activity perspective on classroom interaction.<br>Educational Studies in Mathematics, 2011, 77, 227-245.                                              | 2.8 | 68        |
| 31 | Re/thinking the Zone of Proximal Development (Symmetrically). Mind, Culture, and Activity, 2010, 17, 299-307.                                                                                      | 1.9 | 67        |
| 32 | Coteaching/Cogenerative Dialoguing: Learning Environments Research as Classroom Praxis. Learning<br>Environments Research, 2002, 5, 1-28.                                                          | 2.8 | 66        |
| 33 | Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude<br>Using Climate Change Activities. International Journal of Science Education, 2015, 37, 31-54.      | 1.9 | 64        |
| 34 | Inventors, copycats, and everyone else: The emergence of shared resources and practices as defining aspects of classroom communities. Science Education, 1995, 79, 475-502.                        | 3.0 | 62        |
| 35 | Science, culture, and the emergence of language. Science Education, 2002, 86, 368-385.                                                                                                             | 3.0 | 62        |
| 36 | Bricolage, métissage, hybridity, heterogeneity, diaspora: concepts for thinking science education in<br>the 21st century. Cultural Studies of Science Education, 2008, 3, 891-916.                 | 1.3 | 61        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Student views of collaborative concept mapping: An emancipatory research project. Science<br>Education, 1994, 78, 1-34.                                                                                             | 3.0 | 60        |
| 38 | Making Classifications (at) Work. Social Studies of Science, 2005, 35, 581-621.                                                                                                                                     | 2.5 | 60        |
| 39 | Toward a new conception of conceptions: Interplay of talk, gestures, and structures in the setting.<br>Journal of Research in Science Teaching, 2006, 43, 1086-1109.                                                | 3.3 | 59        |
| 40 | Passibility. , 2011, , .                                                                                                                                                                                            |     | 59        |
| 41 | Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 2006, 90, 173-201.                                                                                                | 3.0 | 57        |
| 42 | Solidarity and conflict: aligned and misaligned prosody as a transactional resource in intra- and intercultural communication involving power differences. Cultural Studies of Science Education, 2010, 5, 807-847. | 1.3 | 52        |
| 43 | Contradictions in the practices of training for and assessment of competency. Education and Training, 2008, 50, 260-272.                                                                                            | 3.1 | 51        |
| 44 | Learning to teach science as practice. Teaching and Teacher Education, 2001, 17, 741-762.                                                                                                                           | 3.2 | 50        |
| 45 | When up is down and down is up: Body orientation, proximity, and gestures as resources. Language in Society, 2002, 31, 1-28.                                                                                        | 0.5 | 49        |
| 46 | Bodily experience and mathematical conceptions: from classical views to a phenomenological reconceptualization. Educational Studies in Mathematics, 2009, 70, 175-189.                                              | 2.8 | 48        |
| 47 | Radical Uncertainty in Scientific Discovery Work. Science Technology and Human Values, 2009, 34, 313-336.                                                                                                           | 3.1 | 48        |
| 48 | Emotional arousal of beginning physics teachers during extended experimental investigations. Journal of Research in Science Teaching, 2013, 50, 137-161.                                                            | 3.3 | 47        |
| 49 | Knowing What You Tell, Telling What You Know: Uncertainty and Asymmetries of Meaning in Interpreting Graphical Data. Cultural Studies of Science Education, 2006, 1, 11-81.                                         | 1.3 | 46        |
| 50 | Reproducing successful rituals in bad times: Exploring emotional interactions of a new science teacher. Science Education, 2011, 95, 745-765.                                                                       | 3.0 | 46        |
| 51 | Engaging young children in collective curriculum design. Cultural Studies of Science Education, 2010, 5, 533-562.                                                                                                   | 1.3 | 45        |
| 52 | Science teaching as knowledgability: A case study of knowing and learning during coteaching. Science<br>Education, 1998, 82, 357-377.                                                                               | 3.0 | 44        |
| 53 | On performing concepts during science lectures. Science Education, 2007, 91, 96-114.                                                                                                                                | 3.0 | 44        |
| 54 | Learning and teaching as emergent features of informal settings: An ethnographic study in an environmental action group. Science Education, 2006, 90, 1028-1049.                                                    | 3.0 | 40        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Coordination in coteaching: Producing alignment in real time. Science Education, 2005, 89, 675-702.                                                                                                      | 3.0 | 39        |
| 56 | A study of laughter in science lessons. Journal of Research in Science Teaching, 2011, 48, 437-458.                                                                                                      | 3.3 | 39        |
| 57 | Deinstitutionalising school science: Implications of a strong view of situated cognition. Research in Science Education, 1997, 27, 497-513.                                                              | 2.3 | 36        |
| 58 | Perceptual gestalts in workplace communication. Journal of Pragmatics, 2004, 36, 1037-1069.                                                                                                              | 1.5 | 36        |
| 59 | Of Disciplined Minds and Disciplined Bodies: On Becoming an Ecologist. Qualitative Sociology, 2001, 24, 459-481.                                                                                         | 1.6 | 35        |
| 60 | Emergence, flexibility, and stabilization of language in a physics classroom. Journal of Research in<br>Science Teaching, 2003, 40, 869-897.                                                             | 3.3 | 35        |
| 61 | The ethico-moral nature of identity: Prolegomena to the development of third-generation<br>Cultural-Historical Activity Theory. International Journal of Educational Research, 2007, 46, 83-93.          | 2.2 | 35        |
| 62 | Promoting pro-environmental attitudes and reported behaviors of Malaysian pre-service teachers using green chemistry experiments. Environmental Education Research, 2012, 18, 375-389.                   | 2.9 | 35        |
| 63 | Changes in Primary Students' Informal Reasoning During an Environment-Related Curriculum on<br>Socio-scientific Issues. International Journal of Science and Mathematics Education, 2018, 16, 401-419.   | 2.5 | 35        |
| 64 | Differential Participation During Science Conversations: The Interaction of Focal Artifacts, Social Configurations, and Physical Arrangements. Journal of the Learning Sciences, 1999, 8, 293-347.       | 2.9 | 35        |
| 65 | Coteaching, as colearning, is praxis. Research in Science Education, 1999, 29, 51-67.                                                                                                                    | 2.3 | 34        |
| 66 | Understanding Educational Psychology. Cultural Psychology of Education, 2017, , .                                                                                                                        | 0.2 | 34        |
| 67 | Problem entered Learning for the Integration of Mathematics and Science in a Constructivist<br>Laboratory: A Case Study. School Science and Mathematics, 1993, 93, 113-122.                              | 0.9 | 33        |
| 68 | Situated cognition and assessment of competence in science. Evaluation and Program Planning, 1998, 21, 155-169.                                                                                          | 1.6 | 33        |
| 69 | Time and temporality as mediators of science learning. Science Education, 2008, 92, 115-140.                                                                                                             | 3.0 | 33        |
| 70 | Fullness of life as minimal unit: Science, technology, engineering, and mathematics (STEM) learning across the life span. Science Education, 2010, 94, 1027-1048.                                        | 3.0 | 33        |
| 71 | Cultural diversity in science education through <i>Novelization</i> : Against the <i>Epicization</i> of science and cultural centralization. Journal of Research in Science Teaching, 2011, 48, 824-847. | 3.3 | 33        |
| 72 | Learning Environments Research, Lifeworld Analysis, and Solidarity in Practice. Learning<br>Environments Research, 1999, 2, 225-247.                                                                     | 2.8 | 32        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Proliferation of inscriptions and transformations among preservice science teachers engaged in authentic science. Journal of Research in Science Teaching, 2007, 44, 538-564.                                          | 3.3 | 32        |
| 74 | Reading <i>Activity, Consciousness, Personality</i> Dialectically: Cultural-Historical Activity Theory and the Centrality of Society. Mind, Culture, and Activity, 2014, 21, 4-20.                                     | 1.9 | 32        |
| 75 | Rules of bending, bending the rules: the geometry of electrical conduit bending in college and workplace. Educational Studies in Mathematics, 2014, 86, 177-192.                                                       | 2.8 | 32        |
| 76 | Interpreting unfamiliar graphs: A generative, activity theoretic model. Educational Studies in Mathematics, 2004, 57, 265-290.                                                                                         | 2.8 | 31        |
| 77 | From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential<br>Descriptions About High School Students' Science Internship. Research in Science Education, 2010, 40,<br>291-311. | 2.3 | 31        |
| 78 | <i>Perezhivanie</i> in the Light of the Later Vygotsky's Spinozist Turn. Mind, Culture, and Activity, 2016, 23, 315-324.                                                                                               | 1.9 | 31        |
| 79 | Knowing, researching, and reporting science education: Lessons from science and technology studies.<br>Journal of Research in Science Teaching, 1998, 35, 213-235.                                                     | 3.3 | 30        |
| 80 | Lecturing graphing: What features of lectures contribute to student difficulties in learning to interpret graph?. Research in Science Education, 1998, 28, 77-90.                                                      | 2.3 | 30        |
| 81 | Activism: A Category for Theorizing Learning. Canadian Journal of Science, Mathematics and Technology Education, 2010, 10, 278-291.                                                                                    | 1.0 | 30        |
| 82 | Staging Aristotle and natural observation against Galileo and (stacked) scientific experiment or physics lectures as rhetorical events. Journal of Research in Science Teaching, 1996, 33, 135-157.                    | 3.3 | 28        |
| 83 | How Does the Body Get Into the Mind?. Human Studies, 2002, 25, 333-358.                                                                                                                                                | 1.0 | 27        |
| 84 | Theorizing passivity. Cultural Studies of Science Education, 2007, 2, 1-8.                                                                                                                                             | 1.3 | 27        |
| 85 | Culturing conceptions: From first principles. Cultural Studies of Science Education, 2008, 3, 231-261.                                                                                                                 | 1.3 | 27        |
| 86 | Competent Workplace Mathematics: How Signs Become Transparent in Use. International Journal of<br>Computers for Mathematical Learning, 2003, 8, 161-189.                                                               | 0.6 | 26        |
| 87 | Remediating misconception on climate change among secondary school students in Malaysia.<br>Environmental Education Research, 2015, 21, 631-648.                                                                       | 2.9 | 26        |
| 88 | A Transactional Approach to Transfer Episodes. Journal of the Learning Sciences, 2016, 25, 285-330.                                                                                                                    | 2.9 | 26        |
| 89 | Representations of scientists in Canadian high school and college textbooks. Journal of Research in<br>Science Teaching, 2008, 45, 1059-1082.                                                                          | 3.3 | 25        |
| 90 | Title is missing!. Science and Education, 1997, 6, 373-396.                                                                                                                                                            | 2.7 | 24        |

6

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Interactional structures during a grade 4-5 open-design engineering unit. Journal of Research in Science Teaching, 1997, 34, 273-302.                                                                                                | 3.3 | 24        |
| 92  | Decalages in Talk and Gesture: Visual and Verbal Semiotics of Ecology Lectures. Linguistics and Education, 1998, 10, 335-358.                                                                                                        | 1.2 | 24        |
| 93  | To be or not to be? Discursive resources for (Disâ€)identifying with scienceâ€related careers. Journal of<br>Research in Science Teaching, 2009, 46, 1114-1136.                                                                      | 3.3 | 24        |
| 94  | Inconsistencies in DIF Detection for Sub-Groups in Heterogeneous Language Groups. Applied Measurement in Education, 2014, 27, 273-285.                                                                                               | 1.1 | 24        |
| 95  | Metaphors and conversational analysis as tools in reflection on teaching practice: Two perspectives on teacher-student interactions in open-inquiry science. Science Education, 1993, 77, 351-373.                                   | 3.0 | 23        |
| 96  | The Emergence of 3D Geometry From Children's (Teacher-Guided) Classification Tasks. Journal of the<br>Learning Sciences, 2009, 18, 45-99.                                                                                            | 2.9 | 23        |
| 97  | Affect and emotions in mathematics education: toward a holistic psychology of mathematics education. Educational Studies in Mathematics, 2019, 102, 111-125.                                                                         | 2.8 | 23        |
| 98  | Using Vee and Concept Maps in Collaborative Settings: Elementary Education Majors Construct<br>Meaning in Physical Science Courses. School Science and Mathematics, 1993, 93, 237-244.                                               | 0.9 | 22        |
| 99  | The Joint Work of Connecting Multiple (Re)presentations in Science Classrooms. Science Education, 2015, 99, 378-403.                                                                                                                 | 3.0 | 22        |
| 100 | Bridging the Gap Between School and Real Life: Toward an Integration of Science, Mathematics, and<br>Technology in the Context of Authentic Practice. School Science and Mathematics, 1992, 92, 307-317.                             | 0.9 | 21        |
| 101 | Translations of scientific practice to "students' images of scienceâ€. Science Education, 2009, 93,<br>611-634.                                                                                                                      | 3.0 | 21        |
| 102 | Science language <i>Wanted Alive</i> : Through the dialectical/dialogical lens of Vygotsky and the<br>Bakhtin circle. Journal of Research in Science Teaching, 2014, 51, 1049-1083.                                                  | 3.3 | 21        |
| 103 | Modeling design as situated and distributed process. Learning and Instruction, 2001, 11, 211-239.                                                                                                                                    | 3.2 | 20        |
| 104 | Community-Level Controversy Over a Natural Resource: Toward a More Democratic Science in Society.<br>Society and Natural Resources, 2006, 19, 429-445.                                                                               | 1.9 | 20        |
| 105 | Natural pedagogical conversations in high school students' internship. Journal of Research in<br>Science Teaching, 2009, 46, 481-505.                                                                                                | 3.3 | 20        |
| 106 | Lab technicians and high school student interns—Who is scaffolding whom?: On forms of emergent<br>expertise. Science Education, 2009, 93, 1-25.                                                                                      | 3.0 | 20        |
| 107 | "They're gonna explain to us what makes a cube a cube?―Geometrical properties as contingent<br>achievement of sequentially ordered child-centered mathematics lessons. Mathematics Education<br>Research Journal, 2012, 24, 323-346. | 1.7 | 20        |
| 108 | A Holistic View of Cockpit Performance: An Analysis of the Assessment Discourse of Flight Examiners.<br>The International Journal of Aviation Psychology, 2014, 24, 210-227.                                                         | 0.7 | 19        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Effects of "Green Chemistry―on Secondary School Students' Understanding and Motivation.<br>Asia-Pacific Education Researcher, 2015, 24, 35-43.                                                           | 3.7 | 19        |
| 110 | Learning in the Discovery Sciences: The History of a "Radical―Conceptual Change, or the Scientific<br>Revolution That Was Not. Journal of the Learning Sciences, 2014, 23, 177-215.                          | 2.9 | 18        |
| 111 | Limits of Generalizing in Education Research: Why Criteria for Research Generalization Should<br>Include Population Heterogeneity and Uses of Knowledge Claims. Teachers College Record, 2014, 116,<br>1-28. | 0.9 | 18        |
| 112 | Rethinking the Role of Information Technology-Based Research Tools in Students' Development of<br>Scientific Literacy. Journal of Science Education and Technology, 2007, 16, 225-238.                       | 3.9 | 17        |
| 113 | Toward a Social Practice Perspective on the Work of Reading Inscriptions in Science Texts. Reading Psychology, 2010, 31, 228-253.                                                                            | 1.4 | 17        |
| 114 | Radical embodiment and semiotics: toward a theory of mathematics in the flesh. Educational Studies in Mathematics, 2011, 77, 267-284.                                                                        | 2.8 | 17        |
| 115 | Conceptualizing sound as a form of incarnate mathematical consciousness. Educational Studies in Mathematics, 2012, 79, 41-59.                                                                                | 2.8 | 17        |
| 116 | Toward a post-constructivist ethics in/of teaching and learning. Pedagogies, 2013, 8, 103-125.                                                                                                               | 0.9 | 17        |
| 117 | The teaching practicum as a locus of multi-leveled, school-based transformation. Teaching Education, 2015, 26, 17-37.                                                                                        | 1.3 | 17        |
| 118 | Peer Assessment of Aviation Performance: Inconsistent for Good Reasons. Cognitive Science, 2015, 39, 405-433.                                                                                                | 1.7 | 17        |
| 119 | Investigating Linguistic Sources of Differential Item Functioning Using Expert Think-Aloud Protocols in Science Achievement Tests. International Journal of Science Education, 2013, 35, 546-576.            | 1.9 | 16        |
| 120 | Situational Awareness as an Instructable and Instructed Matter in Multi-Media Supported Debriefing:<br>a Case Study from Aviation. Computer Supported Cooperative Work, 2015, 24, 461-508.                   | 2.9 | 16        |
| 121 | Toward a mature discipline of science education. Journal of Research in Science Teaching, 1992, 29, 1015-1018.                                                                                               | 3.3 | 15        |
| 122 | How a cockpit forgets speeds (and speed-related events): toward a kinetic description of joint cognitive systems. Cognition, Technology and Work, 2015, 17, 279-299.                                         | 3.0 | 15        |
| 123 | An Analysis of Teacher Discourse that Introduces Real Science Activities to High School Students.<br>Research in Science Education, 2009, 39, 553-574.                                                       | 2.3 | 14        |
| 124 | Mixed-fleet flying in commercial aviation: a joint cognitive systems perspective. Cognition, Technology and Work, 2016, 18, 449-463.                                                                         | 3.0 | 14        |
| 125 | Teacher-as-Researcher Reform: Student Achievement and Perceptions of Learning Environment.<br>Learning Environments Research, 1998, 1, 75-93.                                                                | 2.8 | 13        |
| 126 | Toward solidarity as the ground for changing science education. Cultural Studies of Science Education, 2007, 2, 721-783.                                                                                     | 1.3 | 13        |

| #   | Article                                                                                                                                                                                    | IF               | CITATIONS            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 127 | Working Out the Interstitial and Syncopic Nature of the Human Psyche: On the Analysis of Verbal<br>Data. Integrative Psychological and Behavioral Science, 2014, 48, 283-298.              | 0.9              | 13                   |
| 128 | Personal Health—Personalized Science: A new driver for science education?. International Journal of<br>Science Education, 2014, 36, 1434-1456.                                             | 1.9              | 13                   |
| 129 | Growing-making mathematics: a dynamic perspective on people, materials, and movement in classrooms. Educational Studies in Mathematics, 2016, 93, 87-103.                                  | 2.8              | 13                   |
| 130 | The Primacy of the Social and Sociogenesis. Integrative Psychological and Behavioral Science, 2016, 50, 122-141.                                                                           | 0.9              | 13                   |
| 131 | Collaborative design decision-making as social process. European Journal of Engineering Education, 2019, 44, 294-311.                                                                      | 2.3              | 13                   |
| 132 | Four dialogues and metalogues about the nature of science. Research in Science Education, 1998, 28, 107-118.                                                                               | 2.3              | 12                   |
| 133 | Artificial Neural Networks for Modeling Knowing and Learning in Science. Journal of Research in<br>Science Teaching, 2000, 37, 63-80.                                                      | 3.3              | 12                   |
| 134 | Schooling Is the Problem: A Plaidoyer forÂltsÂDeinstitutionalization. Canadian Journal of Science,<br>Mathematics and Technology Education, 2015, 15, 315-331.                             | 1.0              | 12                   |
| 135 | The visible and the invisible: mathematics as revelation. Educational Studies in Mathematics, 2015, 88, 221-238.                                                                           | 2.8              | 12                   |
| 136 | Enracinement or the earth, the originary ark, does not move: on the phenomenological (historical) Tj ETQq0 0 0<br>understanding. Cultural Studies of Science Education, 2015, 10, 469-494. | rgBT /Ove<br>1.3 | rlock 10 Tf 50<br>11 |
| 137 | Heisenberg's uncertainty principle and interpretive research in science education. Journal of Research<br>in Science Teaching, 1993, 30, 669-680.                                          | 3.3              | 10                   |
| 138 | Autobiography and science education: An introduction. Research in Science Education, 2000, 30, 1-12.                                                                                       | 2.3              | 10                   |
| 139 | Does mathematical learning occur in going from concrete to abstract or in going from abstract to concrete?. Journal of Mathematical Behavior, 2006, 25, 334-344.                           | 0.9              | 10                   |
| 140 | Undoing decontextualization or how scientists come to understand their own data/graphs. Science<br>Education, 2013, 97, 80-112.                                                            | 3.0              | 10                   |
| 141 | Rethinking Affect in Education From a Societal-Historical Perspective: The Case of Mathematics Anxiety. Mind, Culture, and Activity, 2015, 22, 217-232.                                    | 1.9              | 10                   |
| 142 | Quasi-communities: rethinking learning in formal adult and vocational education. Instructional Science, 2016, 44, 583-600.                                                                 | 2.0              | 10                   |
| 143 | Discourse/s in/of CSCW. Computer Supported Cooperative Work, 2016, 25, 385-407.                                                                                                            | 2.9              | 10                   |
| 144 | <i>Neoformation</i> : A Dialectical Approach to Developmental Change. Mind, Culture, and Activity, 2017, 24, 368-380.                                                                      | 1.9              | 10                   |

| #   | Article                                                                                                                                                                                      | IF                | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 145 | The Mathematics of Mathematics. , 2017, , .                                                                                                                                                  |                   | 10            |
| 146 | Dialogical argumentation in elementary science classrooms. Cultural Studies of Science Education, 2018, 13, 1061-1085.                                                                       | 1.3               | 10            |
| 147 | Theorizing with/out "Mediators― Integrative Psychological and Behavioral Science, 2019, 53, 323-343.                                                                                         | 0.9               | 10            |
| 148 | In the name of constructivism: Science education research and the construction of local knowledge.<br>Journal of Research in Science Teaching, 1993, 30, 799-803.                            | 3.3               | 9             |
| 149 | Being-in-the-World and the Horizons of Learning: Heidegger, Wittgenstein, and Cognition.<br>Interchange, 1997, 28, 145-157.                                                                  | 1.8               | 9             |
| 150 | Science and religion: what is at stake?. Cultural Studies of Science Education, 2010, 5, 5-17.                                                                                               | 1.3               | 9             |
| 151 | Technology and science in classroom and interview talk with Swiss lower secondary school students: a Marxist sociological approach. Cultural Studies of Science Education, 2013, 8, 433-465. | 1.3               | 9             |
| 152 | Good reasons for high variability (low inter-rater reliability) in performance assessment: Toward a<br>fuzzy logic model. International Journal of Industrial Ergonomics, 2014, 44, 685-696. | 2.6               | 9             |
| 153 | Meaning and the real life of language—Learning from "pathological―cases in science classrooms.<br>Linguistics and Education, 2015, 30, 42-55.                                                | 1.2               | 9             |
| 154 | Becoming-design in <i>co</i> rresponding: re/theorising the co- in codesigning. CoDesign, 2017, 13, 1-15.                                                                                    | 2.0               | 9             |
| 155 | From Object-Oriented to Fluid Ontology: a Case Study of the Materiality of Design Work in Agile<br>Software Development. Computer Supported Cooperative Work, 2018, 27, 37-75.               | 2.9               | 9             |
| 156 | The resurgence of everyday experiences in school science learning activities. Cultural Studies of Science Education, 2020, 15, 1019-1045.                                                    | 1.3               | 9             |
| 157 | Learning by developing knowledge networks. Zentralblatt Für Didaktik Der Mathematik, 2004, 36,<br>196-205.                                                                                   | 0.4               | 8             |
| 158 | Astonishment: a post-constructivist investigation into mathematics as passion. Educational Studies in Mathematics, 2017, 95, 97-111.                                                         | 2.8               | 8             |
| 159 | Learning difficulties related to graphing: A hermeneutic phenomenological perspective. Research in<br>Science Education, 2000, 30, 123-139.                                                  | 2.3               | 7             |
| 160 | A question of competing paradigms?. Cultural Studies of Science Education, 2008, 3, 373-385.                                                                                                 | 1.3               | 7             |
| 161 | Realizing Vygotsky's program concerning language and thought: tracking knowing (ideas,) Tj ETQq1 1 0.78431                                                                                   | 4 rgBT /Ov<br>2.1 | verlock 10 Tr |
| 162 | The Referencing Practices ofMind, Culture, and Activity: On Citing (Sighting?) and Being Cited<br>(Sighted?). Mind, Culture, and Activity, 2010, 17, 93-101.                                 | 1.9               | 7             |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Flight Examiners' Methods of Ascertaining Pilot Proficiency. The International Journal of Aviation<br>Psychology, 2015, 25, 209-226.                                                                            | 0.7 | 7         |
| 164 | The assessment of mathematical literacy of linguistic minority students: Results of a multi-method investigation. Journal of Mathematical Behavior, 2015, 40, 88-105.                                           | 0.9 | 7         |
| 165 | Discourse forms in a classroom transitioning to student-centred scientific inquiry through co-teaching. International Journal of Science Education, 2019, 41, 586-606.                                          | 1.9 | 7         |
| 166 | Gardener-becoming-tree, tree-becoming-gardener: growing-together as a metaphor for thinking about<br>learning and development. Cultural Studies of Science Education, 2021, 16, 915-930.                        | 1.3 | 7         |
| 167 | Solidarity and conflict: aligned and misaligned prosody as a transactional resource in intra- and intercultural communication involving power differences. Cultural Studies of Science Education, 2010, 5, 807. | 1.3 | 7         |
| 168 | An Integrated Theory of Thinking and Speaking that Draws on Vygotsky and Bakhtin/VoloÅiinov.<br>Dialogic Pedagogy, 0, 1, .                                                                                      | 0.0 | 7         |
| 169 | Publish or Stay Behind and Perhaps Perish: Stability of Publication Practices in (Some) Social Sciences.<br>Soziale Systeme: Zeitschrift FÜr Soziologische Theorie, 2005, 11, 129-150.                          | 0.4 | 6         |
| 170 | Specifying the ethnomethodological "what more?― Cultural Studies of Science Education, 2009, 4,<br>1-12.                                                                                                        | 1.3 | 6         |
| 171 | Reading Online News Media for Science Content: A Social Psychological Approach. Reading<br>Psychology, 2010, 31, 254-281.                                                                                       | 1.4 | 6         |
| 172 | Data Generation in the Discovery Sciences—Learning from the Practices in an Advanced Research<br>Laboratory. Research in Science Education, 2013, 43, 1617-1644.                                                | 2.3 | 6         |
| 173 | Contradictions and uncertainty in scientists' mathematical modeling and interpretation of data.<br>Journal of Mathematical Behavior, 2013, 32, 593-612.                                                         | 0.9 | 6         |
| 174 | Space, relations, and the learning of science. Cultural Studies of Science Education, 2014, 9, 77-113.                                                                                                          | 1.3 | 6         |
| 175 | <i>Becoming aware</i> : towards a post-constructivist theory of learning. Learning: Research and Practice, 2015, 1, 38-50.                                                                                      | 0.4 | 6         |
| 176 | Optimizing a workplace learning pattern: a case study from aviation. Journal of Workplace Learning, 2015, 27, 112-127.                                                                                          | 1.7 | 6         |
| 177 | Interchangeable Positions in Interaction Sequences in Science Classrooms. Dialogic Pedagogy, 0, 5, .                                                                                                            | 0.0 | 6         |
| 178 | Confidence in performance on science tests and student preparation strategies. Research in Science<br>Education, 1999, 29, 209-226.                                                                             | 2.3 | 5         |
| 179 | A dialectical materialist reading of the sign. Semiotica, 2006, 2006, .                                                                                                                                         | 0.5 | 5         |
| 180 | The stakes of movement: A dynamic approach to mathematical thinking. Curriculum Inquiry, 2015, 45, 266-284.                                                                                                     | 1.1 | 5         |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | The Thinking Body In/Of Multimodal Engineering Literacy. Theory Into Practice, 2017, 56, 255-262.                                                                                                                                | 1.6 | 5         |
| 182 | Autopsy of an airplane crash: a transactional approach to forensic cognitive science. Cognition,<br>Technology and Work, 2018, 20, 267-287.                                                                                      | 3.0 | 5         |
| 183 | The invisible subject in educational science. Journal of Curriculum Studies, 2018, 50, 315-332.                                                                                                                                  | 2.1 | 5         |
| 184 | Challenging the Cause–Effect Logic: Toward a Transactional Approach for Understanding Human<br>Behavior in Crisis Situations. Human Arenas, 2018, 1, 262-287.                                                                    | 1.4 | 5         |
| 185 | Reflections During the COVID-19 Pandemic: Science, Education, and Everyday Life. Canadian Journal of Science, Mathematics and Technology Education, 2022, 22, 250-258.                                                           | 1.0 | 5         |
| 186 | Autobiography and the paradox of change: (Dis)locating ourselves in the process. Research in Science<br>Education, 2000, 30, 57-73.                                                                                              | 2.3 | 4         |
| 187 | Catchments, growth points, and the iterability of signs in classroom communication. Semiotica, 2008, 2008, .                                                                                                                     | 0.5 | 4         |
| 188 | History and the relationship between scientific and pedagogical knowledge: anatomy lectures then and now. Journal of Curriculum Studies, 2014, 46, 180-200.                                                                      | 2.1 | 4         |
| 189 | The role of soci(et)al relations in a technology-rich teaching   learning setting: The case of professional development of airline pilots. Learning, Culture and Social Interaction, 2015, 7, 43-58.                             | 1.8 | 4         |
| 190 | Alienation in mathematics education: a problem considered from neo-Vygotskian approaches.<br>Educational Studies in Mathematics, 2017, 96, 367-380.                                                                              | 2.8 | 4         |
| 191 | What Research Says About the Relationships Between Malaysian Teachers' Knowledge, Perceived<br>Difficulties and Self-efficacy, and Practicing STEM Teaching in Schools. Asia-Pacific Education<br>Researcher, 2023, 32, 353-365. | 3.7 | 4         |
| 192 | Title is missing!. Educational Assessment, Evaluation and Accountability, 2002, 16, 307-314.                                                                                                                                     | 0.2 | 3         |
| 193 | Editorial: Collective responsibility and the other. Cultural Studies of Science Education, 2007, 1, 607-614.                                                                                                                     | 1.3 | 3         |
| 194 | Of roads less traveled, trails blazed, and garden paths laid in walking. Cultural Studies of Science<br>Education, 2007, 2, 309-317.                                                                                             | 1.3 | 3         |
| 195 | Epistemology and first philosophy. Cultural Studies of Science Education, 2007, 2, 517-528.                                                                                                                                      | 1.3 | 3         |
| 196 | Cultural–historical activity theory and pedagogy: an introduction. Pedagogies, 2009, 5, 1-5.                                                                                                                                     | 0.9 | 3         |
| 197 | Vygotsky's dynamic conception of the thinking–speaking relationship. Pedagogies, 2009, 5, 49-60.                                                                                                                                 | 0.9 | 3         |
| 198 | At the intersection of text and talk: On the reproduction and transformation of language in the multi-lingual evaluation of multi-lingual texts. Semiotica, 2014, 2014, .                                                        | 0.5 | 3         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | On understanding variability in data: a study of graph interpretation in an advanced experimental biology laboratory. Educational Studies in Mathematics, 2014, 86, 359-376.                                                                | 2.8 | 3         |
| 200 | Re/Thinking the Nature of Technology in Science Classrooms. Interchange, 2016, 47, 169-187.                                                                                                                                                 | 1.8 | 3         |
| 201 | Beyond agency: sources of knowing and learning in children's science- and technology-related problem solving. Cultural Studies of Science Education, 2016, 11, 1081-1101.                                                                   | 1.3 | 3         |
| 202 | Seeing design stances. CoDesign, 2016, 12, 6-25.                                                                                                                                                                                            | 2.0 | 3         |
| 203 | A cultural-historical perspective on the multimodal development of concepts in science lectures.<br>Cultural Studies of Science Education, 2020, 15, 31-70.                                                                                 | 1.3 | 3         |
| 204 | Looking Back and Looking Forward: a Historical Perspective on Science, Mathematics, and Technology<br>Education in Canada Through a Personal Lens. Canadian Journal of Science, Mathematics and<br>Technology Education, 2020, 20, 668-681. | 1.0 | 3         |
| 205 | Learner agency in urban schools? A pragmatic transactional approach. British Journal of Sociology of Education, 2020, 41, 447-461.                                                                                                          | 1.8 | 3         |
| 206 | Science teaching as knowledgability: A case study of knowing and learning during coteaching. Science Education, 1998, 82, 357-377.                                                                                                          | 3.0 | 3         |
| 207 | Why may students fail to learn from demonstrations? A social practice perspective on learning in physics. , 1997, 34, 509.                                                                                                                  |     | 3         |
| 208 | Unveiling the Teachers' Perceived Self-efficacy to Practice Integrated STrEaM Teaching. Asia-Pacific Education Researcher, 2023, 32, 327-337.                                                                                               | 3.7 | 3         |
| 209 | Emancipatory interests: A reply to french. Journal of Research in Science Teaching, 1995, 32, 887-889.                                                                                                                                      | 3.3 | 2         |
| 210 | Student self-evaluations of open-ended projects in a grade 9 science classroom. Research in Science Education, 1999, 29, 431-443.                                                                                                           | 2.3 | 2         |
| 211 | Forum: The Cultures of Schooling and the Reproduction of Inequity. Cultural Studies of Science Education, 2006, 1, 253-272.                                                                                                                 | 1.3 | 2         |
| 212 | Science and religion in a high school physics class: revisiting the source materials of "The interaction of scientific and religious discourses― Cultural Studies of Science Education, 2010, 5, 163-167.                                   | 1.3 | 2         |
| 213 | Toward a Dynamic Understanding of Mind, Culture, Activity, and Life: Difference-in-Itself as the Source of Change. Mind, Culture, and Activity, 2010, 17, 203-211.                                                                          | 1.9 | 2         |
| 214 | On the societal nature of praxis and organic research. Cultural Studies of Science Education, 2016, 11, 105-125.                                                                                                                            | 1.3 | 2         |
| 215 | Elaborating the later Vygotsky's radical initiative on the nature and function of language:<br>implications for mathematics education. ZDM - International Journal on Mathematics Education, 2018,<br>50, 975-986.                          | 2.2 | 2         |
| 216 | "Coercive Care―or "Ur-wir [Great-we]― Communication and Cooperation in Couples Where One<br>Partner Has Been Diagnosed with Dementia. Human Arenas, 2020, 3, 552-574.                                                                       | 1.4 | 2         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | From activity to gestures and scientific language. , 2001, 38, 103.                                                                                                                                    |     | 2         |
| 218 | The Emergence of Signs in Hands-On Science. , 2015, , 1271-1289.                                                                                                                                       |     | 2         |
| 219 | An anthropology of reading science texts in online media. Semiotica, 2010, 2010, .                                                                                                                     | 0.5 | 1         |
| 220 | <i>Nacherzeugung, Nachverstehen</i> : A phenomenological perspective on how public understanding of science changes by engaging with online media. Public Understanding of Science, 2014, 23, 850-865. | 2.8 | 1         |
| 221 | The emerging and emergent present: a view on the indeterminate nature of mathematics lessons.<br>Mathematics Education Research Journal, 2014, 26, 325-352.                                            | 1.7 | 1         |
| 222 | The collective work of engineering losers. Learning, Culture and Social Interaction, 2016, 9, 105-114.                                                                                                 | 1.8 | 1         |
| 223 | The gap between instruction (plan) and situated action: A challenge to semiotics?. Semiotica, 2018, 2018, 1-27.                                                                                        | 0.5 | 1         |
| 224 | Toward an Organic Theory for the Cultural-Historical Sciences. Integrative Psychological and Behavioral Science, 2020, 54, 286-307.                                                                    | 0.9 | 1         |
| 225 | How actions and words come to make sense in a continuously changing world of work: A case study from software development. Semiotica, 2021, 2021, 211-238.                                             | 0.5 | 1         |
| 226 | From interaction to transaction: The primacy of movement and the event as irreducible unit. Adaptive Behavior, 2023, 31, 157-161.                                                                      | 1.9 | 1         |
| 227 | About self-serving interests, trickle-down processes, ends-in-themselves, and "true―democracies: A response to richardson. Journal of Research in Science Teaching, 1995, 32, 891-893.                 | 3.3 | 0         |
| 228 | Comment: What constitutes evidence in science education research?. Journal of Research in Science Teaching, 2011, 48, 1225-1232.                                                                       | 3.3 | 0         |
| 229 | Ecological mindfulness, spirituality, and life-long (hybrid, dialogical) learning: a tribute to Michiel van Eijck. Cultural Studies of Science Education, 2015, 10, 21-40.                             | 1.3 | 0         |
| 230 | <i>Perezhivanie</i> —A Monist Concept for a Monist Theory. Mind, Culture, and Activity, 2016, 23, 353-355.                                                                                             | 1.9 | 0         |
| 231 | Looking Back to the Future: A Response to Kellogg. Mind, Culture, and Activity, 2017, 24, 388-392.                                                                                                     | 1.9 | 0         |
| 232 | Thinking with Spinoza about â€~hands-on' learning. Educational Philosophy and Theory, 2018, 50, 839-848.                                                                                               | 1.8 | 0         |
| 233 | Re/thinking mathematics for social justice: a transactional approach. Pedagogies, 2020, 15, 279-295.                                                                                                   | 0.9 | 0         |
| 234 | Curriculum projects, learner agency and young people's fullness of life. Curriculum Journal, 2021, 32,<br>182-197.                                                                                     | 1.5 | 0         |

| #   | Article                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------|-----|-----------|
| 235 | Expanding young children's lifeworld. Cultural Studies of Science Education, 0, , 1. | 1.3 | 0         |