
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2080483/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrene-Mediated P–N Coupling Under Iron Catalysis. CCS Chemistry, 2022, 4, 2258-2266.	7.8	17
2	High energy conversion composites based on graphene material with excellent healing performances. Journal of Applied Polymer Science, 2022, 139, 51690.	2.6	2
3	Interfacial π–π Interactions Induced Ultralight, 300 °C-Stable, Wideband Graphene/Polyaramid Foam for Electromagnetic Wave Absorption in Both Gigahertz and Terahertz Bands. ACS Applied Materials & Interfaces, 2022, 14, 3218-3232.	8.0	22
4	Achieving multiband compatible and mechanical tuning absorber using edge topological defect-induced graphene plasmon. Carbon, 2022, 192, 1-13.	10.3	8
5	High-Quality Ferromagnet Fe ₃ GeTe ₂ for High-Efficiency Electromagnetic Wave Absorption and Shielding with Wideband Radar Cross Section Reduction. ACS Nano, 2022, 16, 7861-7879.	14.6	39
6	High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon, 2022, 196, 243-252.	10.3	18
7	Hydrophobic and flame-retardant multifunctional foam for enhanced thermal insulation and broadband microwave absorption via a triple-continuous network of RGO/MWCNT-melamine composite. Carbon, 2022, 196, 913-922.	10.3	37
8	System-level graphene foam speaker and the simulation of the thermo-acoustic process. Optics Express, 2022, 30, 23918.	3.4	0
9	The recent progress of MXene-Based microwave absorption materials. Carbon, 2021, 174, 484-499.	10.3	138
10	Concentrationâ€Dependent Photoluminescence Properties of Graphene Oxide. Advanced Photonics Research, 2021, 2, 2000045.	3.6	5
11	Highly Stretchable Carbon Nanotubes/Polymer Thermoelectric Fibers. Nano Letters, 2021, 21, 1047-1055.	9.1	60
12	Electrostatic Actuating Doubleâ€Unit Electrocaloric Cooling Device with High Efficiency. Advanced Energy Materials, 2021, 11, 2003771.	19.5	16
13	Highly Stretchable Shape Memory Self-Soldering Conductive Tape with Reversible Adhesion Switched by Temperature. Nano-Micro Letters, 2021, 13, 124.	27.0	8
14	Synergistically Assembled Cobalt-Telluride/Graphene Foam with High-Performance Electromagnetic Wave Absorption in Both Gigahertz and Terahertz Band Ranges. ACS Applied Materials & Interfaces, 2021, 13, 30967-30979.	8.0	20
15	Direct observation of widely tunable mid-infrared emission of graphene foam induced by modulated laser diode light. Carbon, 2021, 179, 486-492.	10.3	1
16	High-performance microwave absorption of 3D Bi2Te2.7Se0.3/Graphene foam. Carbon, 2021, 183, 702-710.	10.3	13
17	A Review on Metal–Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials. Nano-Micro Letters, 2021, 13, 56.	27.0	216
18	3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption. Nano-Micro Letters, 2021, 13, 206.	27.0	165

#	Article	IF	CITATIONS
19	Hierarchical surface engineering of carbon fiber for enhanced composites interfacial properties and microwave absorption performance. Carbon, 2021, 185, 669-680.	10.3	40
20	lonic Liquid Gating Enhanced Photothermoelectric Conversion in Three-Dimensional Microporous Graphene. ACS Applied Materials & Interfaces, 2020, 12, 28510-28519.	8.0	13
21	An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene. Chinese Journal of Polymer Science (English Edition), 2020, 38, 491-505.	3.8	9
22	Compressible Highly Stable 3D Porous MXene/GO Foam with a Tunable High-Performance Stealth Property in the Terahertz Band. ACS Applied Materials & Interfaces, 2019, 11, 25369-25377.	8.0	78
23	Active Terahertz Shielding and Absorption Based on Graphene Foam Modulated by Electric and Optical Field Excitation. Advanced Optical Materials, 2019, 7, 1900555.	7.3	33
24	Intrinsically stretchable conductors and interconnects for electronic applications. Materials Chemistry Frontiers, 2019, 3, 1032-1051.	5.9	21
25	Grapheneâ€Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies. Advanced Optical Materials, 2019, 7, 1801318.	7.3	208
26	Annealing Temperature-Dependent Terahertz Thermal–Electrical Conversion Characteristics of Three-Dimensional Microporous Graphene. ACS Applied Materials & Interfaces, 2019, 11, 6411-6420.	8.0	40
27	Consecutively Strong Absorption from Gigahertz to Terahertz Bands of a Monolithic Three-Dimensional Fe ₃ 0 ₄ /Graphene Material. ACS Applied Materials & Interfaces, 2019, 11, 1274-1282.	8.0	94
28	Terahertz Photothermoelectric Detection Based on Three-Dimensional Microporous Graphene p-n Junction. , 2019, , .		0
29	Ultraâ€Broadband Wideâ€Angle Terahertz Absorption Properties of 3D Graphene Foam. Advanced Functional Materials, 2018, 28, 1704363.	14.9	223
30	Photothermal Conversion and Fast Response Properties of 3D Graphene Foam in the Terahertz Range. , 2018, , .		0
31	Grapheneâ€Based Composites Combining Both Excellent Terahertz Shielding and Stealth Performance. Advanced Optical Materials, 2018, 6, 1801165.	7.3	60
32	Fast Photothermoelectric Response of 3D Graphene Foam in the Terahertz Range. , 2018, , .		2
33	Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon, 2017, 124, 506-514.	10.3	297
34	Highly Reversible and Recyclable Absorption under Both Hydrophobic and Hydrophilic Conditions using a Reduced Bulk Graphene Oxide Material. Advanced Materials, 2016, 28, 3504-3509.	21.0	63
35	Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon, 2016, 105, 438-447.	10.3	400
36	Construction of a Fishâ€like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials. Advanced Science, 2016, 3, 1500438.	11.2	106

#	Article	IF	CITATIONS
37	Reply to 'Do thermal effects cause the propulsion of bulk graphene material?'. Nature Photonics, 2016, 10, 139-141.	31.4	7
38	Broadband and Tunable Highâ€Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Advanced Materials, 2015, 27, 2049-2053.	21.0	1,598
39	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141.	12.8	458
40	Macroscopic and direct light propulsion of bulk graphene material. Nature Photonics, 2015, 9, 471-476.	31.4	192
41	The use of graphene oxide membranes for the softening of hard water. Science China Technological Sciences, 2014, 57, 284-287.	4.0	16
42	Functionalized graphene oxide based on p-phenylenediamine as spacers and nitrogen dopants for high performance supercapacitors. Science Bulletin, 2014, 59, 1809-1815.	1.7	23
43	A Highâ€Performance Graphene Oxideâ€Doped Ion Gel as Gel Polymer Electrolyte for Allâ€Solidâ€State Supercapacitor Applications. Advanced Functional Materials, 2013, 23, 3353-3360.	14.9	356
44	A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy and Environmental Science, 2013, 6, 1623.	30.8	875
45	Multichannel and Repeatable Selfâ€Healing of Mechanical Enhanced Grapheneâ€Thermoplastic Polyurethane Composites. Advanced Materials, 2013, 25, 2224-2228.	21.0	280
46	Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 2013, 6, 581-592.	10.4	204
47	The application of graphene based materials for actuators. Journal of Materials Chemistry, 2012, 22, 3671.	6.7	137
48	Functionalization of Graphene Oxide by Twoâ€6tep Alkylation. Macromolecular Chemistry and Physics, 2012, 213, 1101-1106.	2.2	19
49	An Overview of the Applications of Grapheneâ€Based Materials in Supercapacitors. Small, 2012, 8, 1805-1834.	10.0	1,210
50	Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry, 2011, 21, 3448-3454.	6.7	496
51	Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Research, 2011, 4, 675-684.	10.4	397
52	Electromechanical Actuators Based on Graphene and Graphene/Fe ₃ O ₄ Hybrid Paper. Advanced Functional Materials, 2011, 21, 3778-3784.	14.9	170
53	Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Research, 2010, 3, 661-669.	10.4	269
54	Molecular‣evel Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 2009, 19, 2297-2302.	14.9	1,481

#	Article	IF	CITATIONS
55	Semiconducting Oligoâ€(Aryleneethynylene)s with Coplanarity of Main Chain and Tetrathiafulvalene (TTF) Side Chains: Synthesis, Selfâ€Assembly, and Conductive Properties. Macromolecular Chemistry and Physics, 2009, 210, 1044-1051.	2.2	2
56	A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research, 2009, 2, 343-348.	10.4	320
57	Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47, 922-925.	10.3	1,199
58	Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 2009, 47, 3365-3368.	10.3	414
59	Room-Temperature Ferromagnetism of Graphene. Nano Letters, 2009, 9, 220-224.	9.1	595
60	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	3.1	2,295
61	Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 2009, 19, 2710.	6.7	963
62	Infrared-Triggered Actuators from Graphene-Based Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 9921-9927.	3.1	355
63	A Novel Poly(aryleneethynylene) with Tetrathiafulvalene (TTF) Side Chains: Synthesis, Selfâ€Assembly, and Electroactive Property. Macromolecular Rapid Communications, 2008, 29, 719-723.	3.9	12
64	High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. Journal of Physical Chemistry C, 2008, 112, 17554-17558.	3.1	909
65	Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. Journal of Physical Chemistry C, 2007, 111, 13696-13700.	3.1	324
66	The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon, 2007, 45, 1614-1621.	10.3	524