
Jin-Jie Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/208045/publications.pdf Version: 2024-02-01

LIN-LIE CUI

#	Article	IF	CITATIONS
1	Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. Journal of Hazardous Materials, 2022, 423, 127258.	12.4	97
2	Chromosomeâ€level genome assemblies of two cottonâ€melon aphid <i>Aphis gossypii</i> biotypes unveil mechanisms of host adaption. Molecular Ecology Resources, 2022, 22, 1120-1134.	4.8	10
3	Silencing of cytochrome P450 gene CYP321A1 effects tannin detoxification and metabolism in Spodoptera litura. International Journal of Biological Macromolecules, 2022, 194, 895-902.	7.5	25
4	Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. Ecotoxicology and Environmental Safety, 2022, 233, 113338.	6.0	16
5	<i>Helicoverpa armigera</i> herbivory negatively impacts <i>Aphis gossypii</i> populations via inducible metabolic changes. Pest Management Science, 2022, 78, 2357-2369.	3.4	4
6	Impact assessment of genetically modified herbicide-tolerant cotton on arthropod communities. Journal of Cotton Research, 2022, 5, .	2.5	1
7	Insights into wing dimorphism in worldwide agricultural pest and host-alternating aphid Aphis gossypii. Journal of Cotton Research, 2021, 4, .	2.5	5
8	Universal LNA Probe-Mediated Multiplex Droplet Digital Polymerase Chain Reaction for Ultrasensitive and Accurate Quantitative Analysis of Genetically Modified Organisms. Journal of Agricultural and Food Chemistry, 2021, 69, 1705-1713.	5.2	7
9	Mitochondrial genome of Aphis gossypii Glover cucumber biotype (Hemiptera: Aphididae). Mitochondrial DNA Part B: Resources, 2021, 6, 922-924.	0.4	0
10	Population dynamics, hunting nature on insect pests and existence of symbiotic bacterial microbes among leading transgenic cotton spiders. Journal of Asia-Pacific Entomology, 2021, 24, 297-307.	0.9	1
11	Evaluation of sublethal and transgenerational effects of sulfoxaflor on <scp><i>Aphis gossypii</i></scp> via life table parameters and <scp>16S rRNA</scp> sequencing. Pest Management Science, 2021, 77, 3406-3418.	3.4	19
12	Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae). Frontiers in Microbiology, 2021, 12, 670383.	3.5	22
13	Dynamic transcriptome analysis and Methoprene-tolerant gene knockdown reveal that juvenile hormone regulates oogenesis and vitellogenin synthesis in Propylea Japonica. Genomics, 2021, 113, 2877-2889.	2.9	6
14	Potential of Cucurbitacin B and Epigallocatechin Gallate as Biopesticides against Aphis gossypii. Insects, 2021, 12, 32.	2.2	13
15	Sublethal Exposure to Deltamethrin Stimulates Reproduction and Alters Symbiotic Bacteria in <i>Aphis gossypii</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 15097-15107.	5.2	20
16	Chromosomeâ€level genome assembly of the predator <i>Propylea japonica</i> to understand its tolerance to insecticides and high temperatures. Molecular Ecology Resources, 2020, 20, 292-307.	4.8	43
17	Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach. Food Chemistry, 2020, 309, 125760.	8.2	10
18	Bt, Not a Threat to Propylea japonica. Frontiers in Physiology, 2020, 11, 758.	2.8	8

Jin-Jie Cui

#	Article	IF	CITATIONS
19	Bacterial communities in natural versus pesticideâ€ŧreated <i>Aphis gossypii</i> populations in North China. MicrobiologyOpen, 2019, 8, e00652.	3.0	17
20	Growth and Fatty Acid Metabolism of <i>Aphis gossypii</i> Parasitized by the Parasitic Wasp <i>Lysiphlebia japonica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 8756-8765.	5.2	14
21	Response of the bacterial community of Propylea japonica (Thunberg) to Cry2Ab protein. Environmental Pollution, 2019, 254, 113063.	7.5	29
22	Comparative transcriptional analysis provides insights of possible molecular mechanisms of wing polyphenism induced by postnatal crowding in Aphis gossypii. Journal of Cotton Research, 2019, 2, .	2.5	4
23	The Developmental Stage Symbionts of the Pea Aphid-Feeding Chrysoperla sinica (Tjeder). Frontiers in Microbiology, 2019, 10, 2454.	3.5	25
24	Biodiversity of the microbiota in <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae). Journal of Applied Microbiology, 2019, 126, 1199-1208.	3.1	35
25	The biotypes and host shifts of cotton-melon aphids Aphis gossypii in northern China. Journal of Integrative Agriculture, 2018, 17, 2066-2073.	3.5	7
26	Distinct binding affinities of odorant-binding proteins from the natural predator Chrysoperla sinica suggest different strategies to hunt prey. Journal of Insect Physiology, 2018, 111, 25-31.	2.0	11
27	Effect of NaCl-stressed Bacillus thuringiensis (Bt) cotton on the feeding behaviors and nutritional parameters of Helicoverpa armigera. PLoS ONE, 2018, 13, e0198570.	2.5	4
28	RNA-Seq and UHPLC-Q-TOF/MS Based Lipidomics Study in Lysiphlebia japonica. Scientific Reports, 2018, 8, 7802.	3.3	6
29	Trypsinized Cry1Fa and Vip3Aa have no detrimental effects on the adult green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). Applied Entomology and Zoology, 2017, 52, 321-327.	1.2	6
30	Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR. Gene, 2017, 637, 211-218.	2.2	14
31	Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields. Journal of Integrative Agriculture, 2017, 16, 1624-1633.	3.5	16
32	Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton. PLoS ONE, 2017, 12, e0170379.	2.5	20
33	An example of host plant expansion of host-specialized Aphis gossypii Glover in the field. PLoS ONE, 2017, 12, e0177981.	2.5	10
34	Identification and validation of reference genes for gene expression analysis in Aphidius gifuensis (Hymenoptera: Aphidiidae). PLoS ONE, 2017, 12, e0188477.	2.5	25
35	Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China. Scientific Reports, 2016, 6, 22958.	3.3	46
36	Complete mitochondrial genome of <i>Aphis gossypii</i> Glover (Hemiptera: Aphididae). Mitochondrial DNA, 2016, 27, 854-855.	0.6	23

Jin-Jie Cui

#	Article	IF	CITATIONS
37	Identification of Aphis gossypii Glover (Hemiptera: Aphididae) Biotypes from Different Host Plants in North China. PLoS ONE, 2016, 11, e0146345.	2.5	38
38	The Distribution and Host Shifts of Cotton-Melon Aphids in Northern China. PLoS ONE, 2016, 11, e0152103.	2.5	5
39	Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2015, 15, 28-38.	1.0	25
40	Odorant-binding proteins display high affinities for behavioral attractants and repellents in the natural predator Chrysopa pallens. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 185, 51-57.	1.8	19
41	Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera. Journal of Chemical Ecology, 2015, 41, 473-485.	1.8	61
42	Suppression Subtractive Hybridization Reveals Different Responses of Two Varieties of Gossypium arboreum L. Under Apolygus lucorum Stress. Journal of Integrative Agriculture, 2014, 13, 1250-1257.	3.5	1
43	Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. Journal of Insect Physiology, 2013, 59, 263-272.	2.0	69
44	A Spodoptera exigua Cadherin Serves as a Putative Receptor for Bacillus thuringiensis Cry1Ca Toxin and Shows Differential Enhancement of Cry1Ca and Cry1Ac Toxicity. Applied and Environmental Microbiology, 2013, 79, 5576-5583.	3.1	53
45	Ecological Adaption Analysis of the Cotton Aphid (Aphis gossypii) in Different Phenotypes by Transcriptome Comparison. PLoS ONE, 2013, 8, e83180.	2.5	30
46	First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur). PLoS ONE, 2013, 8, e67151.	2.5	28
47	Identification and Binding Characterization of Three Odorant Binding Proteins and One Chemosensory Protein from Apolygus lucorum (Meyer-Dur). Journal of Chemical Ecology, 2012, 38, 1163-1170.	1.8	46
	Effect of Dynamiding Bt and CnTL Canas on Desistance of Cotton to Holicoverna armigera (Lenidoptera) Ti ETOO	$0.0 r \sigma BT$	Overloch 10

Effect of Pyramiding Bt and CpTI Genes on Resistance of Cotton to Helicoverpa armigera (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 1.8 36 673-684.

48