Paul A Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079962/publications.pdf

Version: 2024-02-01

46 papers

5,333 citations

28 h-index 315719 38 g-index

54 all docs

54 docs citations

times ranked

54

9228 citing authors

#	Article	IF	CITATIONS
1	Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359, 920-926.	12.6	1,199
2	The Identification of 2-(1 <i>>H</i> -Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2- <i>d</i>)[pyrimic (GDC-0941) as a Potent, Selective, Orally Bioavailable Inhibitor of Class I PI3 Kinase for the Treatment of Cancer. Journal of Medicinal Chemistry, 2008, 51, 5522-5532.	dine 6.4	710
3	Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Molecular Oncology, 2012, 6, 155-176.	4.6	447
4	Pharmacologic Characterization of a Potent Inhibitor of Class I Phosphatidylinositide 3-Kinases. Cancer Research, 2007, 67, 5840-5850.	0.9	337
5	Inhibitors of cyclin-dependent kinases as cancer therapeutics. , 2017, 173, 83-105.		278
6	Drugging the PI3 Kinome: From Chemical Tools to Drugs in the Clinic. Cancer Research, 2010, 70, 2146-2157.	0.9	254
7	Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Molecular Cancer Therapeutics, 2009, 8, 1725-1738.	4.1	253
8	Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Research, 1991, 19, 243-248.	14.5	180
9	ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nature Chemical Biology, 2013, 9, 307-312.	8.0	132
10	Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nature Medicine, 2019, 25, 292-300.	30.7	120
11	A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nature Chemical Biology, 2015, 11, 973-980.	8.0	114
12	In vitro Biological Characterization of a Novel, Synthetic Diaryl Pyrazole Resorcinol Class of Heat Shock Protein 90 Inhibitors. Cancer Research, 2007, 67, 2206-2216.	0.9	111
13	MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology, 2018, 154, 1066-1079.e5.	1.3	94
14	Discovery of Potent, Selective, and Orally Bioavailable Small-Molecule Modulators of the Mediator Complex-Associated Kinases CDK8 and CDK19. Journal of Medicinal Chemistry, 2016, 59, 1078-1101.	6.4	89
15	Structure-Based Optimization of Potent, Selective, and Orally Bioavailable CDK8 Inhibitors Discovered by High-Throughput Screening. Journal of Medicinal Chemistry, 2016, 59, 9337-9349.	6.4	86
16	Demonstrating In-Cell Target Engagement Using a Pirin Protein Degradation Probe (CCT367766). Journal of Medicinal Chemistry, 2018, 61, 918-933.	6.4	81
17	Gene expression microarray technologies in the development of new therapeutic agents. European Journal of Cancer, 2004, 40, 2560-2591.	2.8	77
18	Molecular pharmacology of phosphatidylinositol 3-kinase inhibition in human glioma. Cell Cycle, 2009, 8, 443-453.	2.6	69

#	Article	IF	Citations
19	Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. ELife, 2016, 5, .	6.0	69
20	The kinase polypharmacology landscape of clinical PARP inhibitors. Scientific Reports, 2020, 10, 2585.	3.3	68
21	Discovery of Potent, Orally Bioavailable, Small-Molecule Inhibitors of WNT Signaling from a Cell-Based Pathway Screen. Journal of Medicinal Chemistry, 2015, 58, 1717-1735.	6.4	65
22	Genome-based cancer therapeutics: targets, kinase drug resistance and future strategies for precision oncology. Current Opinion in Pharmacology, 2013, 13, 486-496.	3.5	55
23	Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS ONE, 2020, 15, e0234103.	2.5	50
24	De Novo Missense Substitutions in the Gene Encoding CDK8, a Regulator of the Mediator Complex, Cause a Syndromic Developmental Disorder. American Journal of Human Genetics, 2019, 104, 709-720.	6.2	41
25	Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. Journal of Clinical Investigation, 2020, 130, 5875-5892.	8.2	40
26	2,8-Disubstituted-1,6-Naphthyridines and 4,6-Disubstituted-Isoquinolines with Potent, Selective Affinity for CDK8/19. ACS Medicinal Chemistry Letters, 2016, 7, 573-578.	2.8	39
27	CHK1 Inhibition Is Synthetically Lethal with Loss of B-Family DNA Polymerase Function in Human Lung and Colorectal Cancer Cells. Cancer Research, 2020, 80, 1735-1747.	0.9	38
28	Molecular profiling and combinatorial activity of <scp>CCT</scp> 068127: a potent <scp>CDK</scp> 2 and <scp>CDK</scp> 9 inhibitor. Molecular Oncology, 2018, 12, 287-304.	4.6	33
29	Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.	7. 3	30
30	Molecular pharmacology of cancer therapy in human colorectal cancer by gene expression profiling. Cancer Research, 2003, 63, 6855-63.	0.9	27
31	Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Oncogene, 2019, 38, 5076-5090.	5.9	26
32	Epstein-Barr virus gene expression in interferon-treated cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1050, 167-173.	2.4	24
33	Signalling involving MET and FAK supports cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases. Oncogene, 2019, 38, 5905-5920.	5.9	23
34	The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design. Oncotarget, 2013, 4, 1647-1661.	1.8	20
35	A Genome-scale CRISPR Screen Identifies the ERBB and mTOR Signaling Networks as Key Determinants of Response to PI3K Inhibition in Pancreatic Cancer. Molecular Cancer Therapeutics, 2020, 19, 1423-1435.	4.1	14
36	Evolution of kinase polypharmacology across HSP90 drug discovery. Cell Chemical Biology, 2021, 28, 1433-1445.e3.	5.2	13

3

#	Article	IF	CITATIONS
37	A PI3K- and GTPase-independent Rac1-mTOR mechanism mediates MET-driven anchorage-independent cell growth but not migration. Science Signaling, 2020, 13 , .	3.6	11
38	Blocking the survival of the nastiest by HSP90 inhibition. Oncotarget, 2016, 7, 3658-3661.	1.8	11
39	Abstract 2730: RNAi knockdown or chemical inhibition of anaphase-promoting complex components is synthetic lethal with HSP90 inhibition. , 2014, , .		1
40	Abstract 2501: Inhibition of the PI3K pathway potentiates temozolomide effects in pediatric glioblastoma and results in alterations in glucose and choline metabolism detected by MRS. , 2012, , .		0
41	Abstract 1133: Synthetic lethal screen identifies candidates that modulate cancer cell sensitivity in response to HSP90 inhibition , 2013 , , .		0
42	Abstract 2925: Mechanism-based combinatorial treatment of KRAS mutant colorectal cancer with MEK and Pl3K pathway inhibitors. , 2014, , .		0
43	Abstract 2843: Resistance to ERK inhibitors as a result of an acquired novel P-loop mutation of ERK2., $2015,$		O
44	Abstract 4549: Proteomic analysis of ubiquitination identifies the interplay between HSP90 inhibition and CUL5 in the control of autophagy. , 2016 , , .		0
45	Abstract 129: Assessing the mechanism and therapeutic potential of modulators of the human mediator complex-associated protein kinases CDK8 and CDK19., 2017,,.		0
46	Abstract 2976: Confirmation of in-cell target engagement using the proteolysis targeting chimeras (PROTACs) against pirin. , 2018 , , .		0