
Simone Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. Plants, 2021, 10, 399.	3.5	30
2	The <i>Arabidopsis thaliana</i> LysMâ€containing Receptorâ€Like Kinase 2 is required for elicitorâ€induced resistance to pathogens. Plant, Cell and Environment, 2021, 44, 3775-3792.	5.7	22
3	Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nature Communications, 2021, 12, 6847.	12.8	55
4	Coordination of five class III peroxidase-encoding genes for early germination events of Arabidopsis thaliana. Plant Science, 2020, 298, 110565.	3.6	20
5	Superconducting-Nanowire Single-Photon Spectrometer Exploiting Cascaded Photonic Crystal Cavities. Physical Review Applied, 2020, 13, .	3.8	5
6	Cell wall traits that influence plant development, immunity, and bioconversion. Plant Journal, 2019, 97, 134-147.	5.7	106
7	Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate. Applied Physics Letters, 2019, 115, .	3.3	7
8	Protocol of Measuring Hot-Spot Correlation Length for SNSPDs With Near-Unity Detection Efficiency. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	4
9	An EFRâ€Cfâ€9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1―and BAK1â€dependent recognition of elf18. Molecular Plant Pathology, 2019, 20, 751-764.	4.2	19
10	Cavity-Enhanced Superconducting Single Photon Detectors. , 2018, , .		0
11	Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics, 2018, 7, 1725-1758.	6.0	103
12	Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends in Immunology, 2018, 39, 937-950.	6.8	105
13	Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 2018, 5, 658.	9.3	58
14	Methods of Isolation and Characterization of Oligogalacturonide Elicitors. Methods in Molecular Biology, 2017, 1578, 25-38.	0.9	8
15	Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. Nano Letters, 2017, 17, 150-155.	9.1	148
16	Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Optics Express, 2017, 25, 8739.	3.4	15
17	Sub-Poisson-binomial light. Physical Review A, 2016, 94, .	2.5	11
18	Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors. Nano Letters, 2016, 16, 7085-7092.	9.1	77

SIMONE FERRARI

#	Article	IF	CITATIONS
19	Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps. , 2016, , .		3
20	The Arabidopsis thaliana Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage Plant Physiology, 2015, 169, pp.01464.2015.	4.8	56
21	Editorial for Phytochemistry issue â€~In Memory of G. Paul Bolwell: Plant Cell Wall Dynamics'. Phytochemistry, 2015, 112, 13-14.	2.9	Ο
22	Combination of Pretreatment with White Rot Fungi and Modification of Primary and Secondary Cell Walls Improves Saccharification. Bioenergy Research, 2015, 8, 175-186.	3.9	10
23	Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires. Applied Physics Letters, 2015, 106, .	3.3	37
24	Controlled expression of pectic enzymes in Arabidopsis thaliana enhances biomass conversion without adverse effects on growth. Phytochemistry, 2015, 112, 221-230.	2.9	27
25	Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5533-5538.	7.1	179
26	Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Science and Applications, 2015, 4, e338-e338.	16.6	60
27	The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses Â. Plant Physiology, 2014, 165, 262-276.	4.8	71
28	Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification. Biotechnology for Biofuels, 2013, 6, 163.	6.2	44
29	Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science, 2013, 4, 49.	3.6	401
30	Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interference. Plant Cell Reports, 2012, 31, 133-143.	5.6	36
31	Integrated plant biotechnologies applied to safer and healthier food production: The Nutra-Snack manufacturing chain. Trends in Food Science and Technology, 2011, 22, 353-366.	15.1	18
32	Oligogalacturonide-Auxin Antagonism Does Not Require Posttranscriptional Gene Silencing or Stabilization of Auxin Response Repressors in Arabidopsis Â. Plant Physiology, 2011, 157, 1163-1174.	4.8	72
33	Arabidopsis MPK3 and MPK6 Play Different Roles in Basal and Oligogalacturonide- or Flagellin-Induced Resistance against <i>Botrytis cinerea</i> Â Â. Plant Physiology, 2011, 157, 804-814.	4.8	239
34	Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 616-621.	7.1	192
35	Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis <i>mlo2</i> Mutant. Plant Physiology, 2010, 152, 1544-1561.	4.8	121
36	Biological Elicitors of Plant Secondary Metabolites: Mode of Action and Use in the Production of Nutraceutics. Advances in Experimental Medicine and Biology, 2010, 698, 152-166.	1.6	53

SIMONE FERRARI

#	Article	IF	CITATIONS
37	Host-derived signals activate plant innate immunity. Plant Signaling and Behavior, 2009, 4, 33-34.	2.4	42
38	Activation of Defense Response Pathways by OGs and Flg22 Elicitors in Arabidopsis Seedlings. Molecular Plant, 2008, 1, 423-445.	8.3	448
39	<i>Rha1</i> , a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology. Plant Signaling and Behavior, 2008, 3, 989-990.	2.4	2
40	Transgenic Expression of a Fungal endo-Polygalacturonase Increases Plant Resistance to Pathogens and Reduces Auxin Sensitivity. Plant Physiology, 2008, 146, 323-324.	4.8	112
41	The AtrbohD-Mediated Oxidative Burst Elicited by Oligogalacturonides in Arabidopsis Is Dispensable for the Activation of Defense Responses Effective against <i>Botrytis cinerea</i> Â Â. Plant Physiology, 2008, 148, 1695-1706.	4.8	232
42	Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid, Ethylene, or Jasmonate Signaling But Requires PHYTOALEXIN DEFICIENT3 Â. Plant Physiology, 2007, 144, 367-379.	4.8	383
43	Antisense Expression of the Arabidopsis thaliana AtPGIP1 Gene Reduces Polygalacturonase-Inhibiting Protein Accumulation and Enhances Susceptibility to Botrytis cinerea. Molecular Plant-Microbe Interactions, 2006, 19, 931-936.	2.6	87
44	Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiological and Molecular Plant Pathology, 2005, 67, 108-115.	2.5	88
45	Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2 , but not SID2 , EDS5 or PAD4. Plant Journal, 2003, 35, 193-205.	5.7	463
46	Tandemly Duplicated Arabidopsis Genes That Encode Polygalacturonase-Inhibiting Proteins Are Regulated Coordinately by Different Signal Transduction Pathways in Response to Fungal Infection. Plant Cell, 2003, 15, 93-106.	6.6	240
47	Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2992-2997.	7.1	380
48	Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi. Current Opinion in Plant Biology, 2002, 5, 295-299.	7.1	206