
Kin Man Au

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079438/publications.pdf Version: 2024-02-01

Κίνι Μάνι Διι

#	Article	IF	CITATIONS
1	Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigenâ€Specific Therapy for Experimental Autoimmune Encephalomyelitis. Advanced Materials, 2022, 34, e2107392.	21.0	7
2	Immune Checkpoint Ligand Bioengineered Schwann Cells as Antigenâ€Specific Therapy for Experimental Autoimmune Encephalomyelitis (Adv. Mater. 5/2022). Advanced Materials, 2022, 34, .	21.0	0
3	Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models. Acta Biomaterialia, 2021, 124, 327-335.	8.3	34
4	lmmune Checkpointâ€Bioengineered Beta Cell Vaccine Reverses Earlyâ€Onset Type 1 Diabetes. Advanced Materials, 2021, 33, e2101253.	21.0	16
5	<i>In Vivo</i> Bioengineering of Beta Cells with Immune Checkpoint Ligand as a Treatment for Early-Onset Type 1 Diabetes Mellitus. ACS Nano, 2021, 15, 19990-20002.	14.6	12
6	Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Science Advances, 2020, 6, eaba8564.	10.3	66
7	Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles for treatment of non-Hodgkin's lymphoma. Science Advances, 2020, 6, eaaz9798.	10.3	30
8	High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles. ACS Central Science, 2019, 5, 122-144.	11.3	28
9	Bespoke Pretargeted Nanoradioimmunotherapy for the Treatment of Non-Hodgkin Lymphoma. ACS Nano, 2018, 12, 1544-1563.	14.6	38
10	Nanoparticle co-delivery of wortmannin and cisplatin synergistically enhances chemoradiotherapy and reverses platinum resistance in ovarian cancer models. Biomaterials, 2018, 169, 1-10.	11.4	65
11	Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. Journal of Materials Chemistry B, 2017, 5, 6049-6057.	5.8	53
12	Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials, 2016, 82, 178-193.	11.4	100
13	Direct Observation of Early-Stage High-Dose Radiotherapy-Induced Vascular Injury via Basement Membrane-Targeting Nanoparticles. Small, 2015, 11, 6404-6410.	10.0	8
14	Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale, 2015, 7, 2805-2811.	5.6	32
15	Improving Cancer Chemoradiotherapy Treatment by Dual Controlled Release of Wortmannin and Docetaxel in Polymeric Nanoparticles. ACS Nano, 2015, 9, 8976-8996.	14.6	67
16	Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging. Biomaterials, 2013, 34, 8925-8940.	11.4	22
17	Near-infrared light-triggered irreversible aggregation of poly(oligo(ethylene glycol)) Tj ETQq1 1 0.784314 rgBT /(Communications, 2013, 49, 10525.	Overlock 1 4.1	0 Tf 50 107 35
18	Photothermal detection of the contrast properties of polypyrrole nanoparticles using optical coherence tomography. Proceedings of SPIE, 2013, , .	0.8	1

#	Article	IF	CITATIONS
19	Heterocoagulation as a Facile Route To Prepare Stable Serum Albumin-Nanoparticle Conjugates for Biomedical Applications: Synthetic Protocols and Mechanistic Insights. ACS Nano, 2012, 6, 8261-8279.	14.6	36
20	Polypyrrole Nanoparticles: A Potential Optical Coherence Tomography Contrast Agent for Cancer Imaging. Advanced Materials, 2011, 23, 5792-5795.	21.0	94