Clara Nervi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079425/publications.pdf Version: 2024-02-01

CLADA NEDVI

#	Article	IF	CITATIONS
1	Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature, 1998, 391, 815-818.	27.8	1,015
2	A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis. Cell, 2005, 123, 819-831.	28.9	935
3	Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor. Science, 2002, 295, 1079-1082.	12.6	754
4	Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Medicine, 2005, 11, 71-76.	30.7	505
5	Epigenetic Silencing of the Myelopoiesis Regulator microRNA-223 by the AML1/ETO Oncoprotein. Cancer Cell, 2007, 12, 457-466.	16.8	373
6	Arsenic Trioxide as an Inducer of Apoptosis and Loss of PML/RARα Protein in Acute Promyelocytic Leukemia Cells. Journal of the National Cancer Institute, 1998, 90, 124-133.	6.3	344
7	Myc-binding-site recognition in the human genome is determined by chromatin context. Nature Cell Biology, 2006, 8, 764-770.	10.3	333
8	Retinoic acid receptors: From molecular mechanisms to cancer therapy. Molecular Aspects of Medicine, 2015, 41, 1-115.	6.4	284
9	Oligomerization of RAR and AML1 Transcription Factors as a Novel Mechanism of Oncogenic Activation. Molecular Cell, 2000, 5, 811-820.	9.7	273
10	Genetic Diagnosis and Molecular Monitoring in the Management of Acute Promyelocytic Leukemia. Blood, 1999, 94, 12-22.	1.4	193
11	Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?. Oncogene, 2001, 20, 3110-3115.	5.9	191
12	Epigenetic treatment of solid tumours: a review of clinical trials. Clinical Epigenetics, 2015, 7, 127.	4.1	183
13	A Retinoid-Resistant Acute Promyelocytic Leukemia Subclone Expresses a Dominant Negative PML-RARα Mutation. Blood, 1997, 89, 4282-4289.	1.4	152
14	Histone Deacetylase Inhibitor Valproic Acid Enhances the Cytokine-Induced Expansion of Human Hematopoietic Stem Cells. Cancer Research, 2005, 65, 1505-1513.	0.9	147
15	Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood, 2013, 121, 499-509.	1.4	143
16	Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood, 2012, 119, 4034-4046.	1.4	139
17	Sequential Valproic Acid/All-trans Retinoic Acid Treatment Reprograms Differentiation in Refractory and High-Risk Acute Myeloid Leukemia. Cancer Research, 2006, 66, 8903-8911.	0.9	125
18	MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovascular Research, 2008, 79, 553-561.	3.8	122

CLARA NERVI

#	Article	IF	CITATIONS
19	Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7757-7762.	7.1	114
20	MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks. Molecular and Cellular Biology, 2008, 28, 5912-5923.	2.3	106
21	Expression of nuclear retinoic acid receptors in normal tracheobronchial cells and in lung carcinoma cells. Experimental Cell Research, 1991, 195, 163-170.	2.6	105
22	Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene, 2003, 22, 2750-2761.	5.9	105
23	Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene, 2005, 24, 1820-1830.	5.9	83
24	Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood, 2007, 109, 4432-4440.	1.4	82
25	Constitutive Degradation of PML/RAR Through the Proteasome Pathway Mediates Retinoic Acid Resistance. Blood, 1999, 93, 1477-1481.	1.4	72
26	Complete remission through blast cell differentiation inPLZF/RARα-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood, 2002, 100, 1065-1067.	1.4	69
27	Altered ligand binding and transcriptional regulation by mutations in the PML/RARα ligand-binding domain arising in retinoic acid–resistant patients with acute promyelocytic leukemia. Blood, 2000, 96, 3200-3208.	1.4	65
28	Response to histone deacetylase inhibition of novel PML/RARα mutants detected in retinoic acid–resistant APL cells. Blood, 2002, 100, 2586-2596.	1.4	63
29	NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls β-globin and G-CSF receptor expression. Blood, 2009, 114, 1753-1763.	1.4	57
30	Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene, 2005, 24, 3358-3368.	5.9	52
31	Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. International Journal of Biochemistry and Cell Biology, 2009, 41, 225-234.	2.8	48
32	Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Letters, 1985, 190, 161-164.	2.8	43
33	Epigenetic Treatment of Myelodysplastic Syndromes and Acute Myeloid Leukemias. Current Medicinal Chemistry, 2008, 15, 1274-1287.	2.4	42
34	Formation of PML/RARα high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAṞ-mediated retinoic acid response. Oncogene, 1999, 18, 6313-6321.	5.9	40
35	Vasopressin-dependent Myogenic Cell Differentiation Is Mediated by Both Ca2+/Calmodulin-dependent Kinase and Calcineurin Pathways. Molecular Biology of the Cell, 2005, 16, 3632-3641.	2.1	40
36	Transcriptional targeting by microRNA-Polycomb complexes: A novel route in cell fate determination. Cell Cycle, 2012, 11, 3543-3549.	2.6	40

CLARA NERVI

#	Article	IF	CITATIONS
37	Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO Journal, 2005, 24, 1232-1242.	7.8	38
38	Targeting of the Nâ€ŧerminal coiled coil oligomerization interface by a helixâ€2 peptide inhibits unmutated and imatinibâ€ŧesistant BCR/ABL. International Journal of Cancer, 2008, 122, 2744-2752.	5.1	38
39	Characterization of the Retinoid Binding Properties of the Major Fusion Products Present in Acute Promyelocytic Leukemia Cells. Blood, 1997, 90, 1175-1185.	1.4	37
40	Targeting of the N-terminal coiled coil oligomerization interface of BCR interferes with the transformation potential of BCR-ABL and increases sensitivity to STI571. Blood, 2003, 102, 2985-2993.	1.4	37
41	A 3-D Microdosimetric Study on Blood Cells: A Permittivity Model of Cell Membrane and Stochastic Electromagnetic Analysis. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 691-698.	4.6	36
42	Regulation of Type I and Type II Transglutaminase in Normal Human Bronchial Epithelial and Lung Carcinoma Cells. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 10-18.	2.9	35
43	Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer. Expert Review of Medical Devices, 2020, 17, 751-758.	2.8	34
44	Positive and Negative Regulation of Proliferation and Differentiation in Tracheobronchial Epithelial Cells. The American Review of Respiratory Disease, 1990, 142, S36-S39.	2.9	33
45	Dynamic and reversibility of heterochromatic gene silencing in human disease. Cell Research, 2005, 15, 679-690.	12.0	32
46	Oncoproteins, heterochromatin silencing and microRNAs: a new link for leukemogenesis. Epigenetics, 2008, 3, 1-4.	2.7	31
47	Skeletal Muscle Regeneration in Mice Is Stimulated by Local Overexpression of V1a-Vasopressin Receptor. Molecular Endocrinology, 2011, 25, 1661-1673.	3.7	29
48	Epigenetics in focus: Pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Critical Reviews in Oncology/Hematology, 2013, 88, 231-245.	4.4	26
49	A novel epigenetic <i>AML1â€ETO/THAP10/miRâ€383</i> mini ircuitry contributes to t(8;21) leukaemogenesis EMBO Molecular Medicine, 2017, 9, 933-949.	^{s.} 6.9	25
50	AVP Induces Myogenesis through the Transcriptional Activation of the Myocyte Enhancer Factor 2. Molecular Endocrinology, 2002, 16, 1407-1416.	3.7	23
51	A minicircuitry of microRNA-9-1 and RUNX1-RUNX1T1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia. International Journal of Cancer, 2017, 140, 653-661.	5.1	21
52	Thalassemias: from gene to therapy. Molecular Aspects of Medicine, 2022, 84, 101028.	6.4	20
53	The Integrity of the Charged Pocket in the BTB/POZ Domain Is Essential for the Phenotype Induced by the Leukemia-Associated t(11;17) Fusion Protein PLZF/RARα. Cancer Research, 2005, 65, 6080-6088.	0.9	19
54	PML/RARa inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity. Oncotarget, 2016, 7, 66386-66397.	1.8	19

Clara Nervi

#	Article	IF	CITATIONS
55	Epigenetic role of miRNAs in normal and leukemic hematopoiesis. Epigenomics, 2013, 5, 539-552.	2.1	17
56	[25] Isolation and binding characteristics of nuclear retinoic acid receptors. Methods in Enzymology, 1990, 189, 248-255.	1.0	16
57	<scp>AML</scp> 1– <scp>ETO</scp> triggers epigenetic activation of early growth response geneÂl, inducing apoptosis in t(8;21) acute myeloid leukemia. FEBS Journal, 2014, 281, 1123-1131.	4.7	16
58	RARs and MicroRNAs. Sub-Cellular Biochemistry, 2014, 70, 151-179.	2.4	14
59	Homeobox 1.3 Expression: Induction by Retinoic Acid in Human Bronchial Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 3-9.	2.9	12
60	Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells, 2020, 9, 2423.	4.1	12
61	Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers, 2022, 14, 2565.	3.7	12
62	Dielectric Spectroscopy of Blood Cells Suspensions: Study on Geometrical Structure of Biological Cells. , 2006, 2006, 3194-7.		10
63	Expression of SMRTβ promotes ligand-induced activation of mutated and wild-type retinoid receptors. Blood, 2004, 104, 4226-4235.	1.4	9
64	Genetic lesions disrupting calreticulin 3′â€untranslated region in <scp>JAK2</scp> mutationâ€negative polycythemia <scp>vera</scp> . American Journal of Hematology, 2020, 95, E263.	4.1	9
65	A microwave microdosimetric study on blood cells: Estimation of cell membrane permittivity and parametric EM analysis. , 2009, , .		8
66	Are DNA damage response kinases a target for the differentiation treatment of acute myeloid leukemia?. IUBMB Life, 2018, 70, 1057-1066.	3.4	8
67	Molecular imaging in immuno-oncology: current status and translational perspectives. Expert Review of Molecular Diagnostics, 2020, 20, 1199-1211.	3.1	8
68	Constitutive Degradation of PML/RAR Through the Proteasome Pathway Mediates Retinoic Acid Resistance. Blood, 1999, 93, 1477-1481.	1.4	8
69	Ruxolitinib binding to human serum albumin: bioinformatics, biochemical and functional characterization in JAK2V617F+ cell models. Scientific Reports, 2019, 9, 16379.	3.3	6
70	Down-stream regions of the POZ-domain influence the interaction of the t(11;17)-associated PLZF/RARα fusion protein with the histone-deacetylase recruiting co-repressor complex. The Hematology Journal, 2001, 2, 385-392.	1.4	6
71	A highly specific q-RT-PCR assay to address the relevance of the JAK2WT and JAK2V617F expression levels and control genes in Ph-negative myeloproliferative neoplasms. Annals of Hematology, 2014, 93, 609-616.	1.8	5
72	Protein Kinase C in Cell Proliferation and Differentiation. Annals of the New York Academy of Sciences, 1988, 551, 369-371.	3.8	4

Clara Nervi

#	Article	IF	CITATIONS
73	AVP Induces Myogenesis through the Transcriptional Activation of the Myocyte Enhancer Factor 2. Molecular Endocrinology, 2002, 16, 1407-1416.	3.7	4
74	Serum albumin and nucleic acids biodistribution: From molecular aspects to biotechnological applications. IUBMB Life, 2022, 74, 866-879.	3.4	4
75	Altered protein phosphorylation in murine muscular dystrophy. Journal of the Neurological Sciences, 1990, 96, 303-319.	0.6	1
76	Eicosapentaenoic acid modulates the synergistic action of CREB1 and ID/E2A family members in the rat pup brain and mouse embryonic stem cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 870-884.	1.9	1
77	Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals. , 2009, , 215-244.		1
78	Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO Journal, 2005, 24, 1899-1899.	7.8	0
79	A tribute to Professor Sergio Adamo, Full Professor of Histology and Embryology at Sapienza University, Rome. European Journal of Translational Myology, 2022, 32, .	1.7	0
80	Dielectric Spectroscopy of Blood Cells Suspensions: Study on Geometrical Structure of Biological Cells. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, ,	0.5	0