List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079279/publications.pdf Version: 2024-02-01

IVAN RUSVN

#	Article	IF	CITATIONS
1	The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 2013, 45, 580-585.	21.4	6,815
2	The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 2015, 348, 648-660.	12.6	4,659
3	Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncology, The, 2015, 16, 490-491.	10.7	642
4	NADPH oxidase–derived free radicals are key oxidants in alcohol-induced liver disease. Journal of Clinical Investigation, 2000, 106, 867-872.	8.2	440
5	Standardizing global gene expression analysis between laboratories and across platforms. Nature Methods, 2005, 2, 351-356.	19.0	416
6	Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environmental Health Perspectives, 2016, 124, 713-721.	6.0	415
7	In vitro models for liver toxicity testing. Toxicology Research, 2013, 2, 23-39.	2.1	368
8	Role of the Kupffer Cell in Mediating Hepatic Toxicity and Carcinogenesis. Toxicological Sciences, 2006, 96, 2-15.	3.1	269
9	Effect of predicted protein-truncating genetic variants on the human transcriptome. Science, 2015, 348, 666-669.	12.6	252
10	The role of kupffer cell oxidant production in early ethanol-induced liver disease,. Free Radical Biology and Medicine, 2001, 31, 1544-1549.	2.9	231
11	Modes of Action and Species-Specific Effects of Di-(2-ethylhexyl)Phthalate in the Liver. Critical Reviews in Toxicology, 2006, 36, 459-479.	3.9	225
12	Predicting Drug-Induced Hepatotoxicity Using QSAR and Toxicogenomics Approaches. Chemical Research in Toxicology, 2011, 24, 1251-1262.	3.3	190
13	Mouse population-guided resequencing reveals that variants in <i>CD44</i> contribute to acetaminophen-induced liver injury in humans. Genome Research, 2009, 19, 1507-1515.	5.5	165
14	Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Laboratory Investigation, 2010, 90, 1437-1446.	3.7	165
15	Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. Journal of Hepatology, 2009, 51, 176-186.	3.7	161
16	Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Letters, 2014, 342, 223-230.	7.2	161
17	Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology, 2005, 41, 336-344.	7.3	147
18	Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA). Journal of Epidemiology and Community Health, 2016, 70, 741-745.	3.7	138

#	Article	IF	CITATIONS
19	Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutation Research - Reviews in Mutation Research, 2016, 768, 27-45.	5.5	137
20	Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 2008, 4, 128-140.	3.0	136
21	Multiparameter In Vitro Assessment of Compound Effects on Cardiomyocyte Physiology Using iPSC Cells. Journal of Biomolecular Screening, 2013, 18, 39-53.	2.6	130
22	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	12.8	124
23	Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 365-394.	1.5	123
24	Peroxisome proliferator-activated receptor is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis, 2000, 21, 823-826.	2.8	122
25	Role of peroxisome proliferator-activated receptor-Â (PPARÂ) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis, 2004, 26, 219-227.	2.8	119
26	Predictive Power of Biomarkers of Oxidative Stress and Inflammation in Patients with Hepatitis C Virus-Associated Hepatocellular Carcinoma. Annals of Surgical Oncology, 2007, 14, 1182-1190.	1.5	115
27	Addressing Human Variability in Next-Generation Human Health Risk Assessments of Environmental Chemicals. Environmental Health Perspectives, 2013, 121, 23-31.	6.0	115
28	Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicology and Applied Pharmacology, 2013, 273, 500-507.	2.8	112
29	High-Content Assays for Hepatotoxicity Using Induced Pluripotent Stem Cell–Derived Cells. Assay and Drug Development Technologies, 2014, 12, 43-54.	1.2	111
30	The DEN and CCl ₄ â€Induced Mouse Model of Fibrosis and Inflammationâ€Associated Hepatocellular Carcinoma. Current Protocols in Pharmacology, 2014, 66, 14.30.1-10.	4.0	109
31	Integrative Chemical–Biological Read-Across Approach for Chemical Hazard Classification. Chemical Research in Toxicology, 2013, 26, 1199-1208.	3.3	107
32	High-Content Assay Multiplexing for Toxicity Screening in Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Hepatocytes. Assay and Drug Development Technologies, 2015, 13, 529-546.	1.2	107
33	Modeling Liver-Related Adverse Effects of Drugs Using <i>k</i> Nearest Neighbor Quantitative Structureâ^'Activity Relationship Method. Chemical Research in Toxicology, 2010, 23, 724-732.	3.3	104
34	Use of <i>in Vitro</i> HTS-Derived Concentration–Response Data as Biological Descriptors Improves the Accuracy of QSAR Models of <i>in Vivo</i> Toxicity. Environmental Health Perspectives, 2011, 119, 364-370.	6.0	103
35	Methyl Deficiency, Alterations in Global Histone Modifications, and Carcinogenesis. Journal of Nutrition, 2007, 137, 216S-222S.	2.9	102
36	Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutation Research - Reviews in Mutation Research, 2012, 750, 141-158.	5.5	100

#	Article	IF	CITATIONS
37	Environmental Toxicants, Epigenetics, and Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 215-232.	1.6	99
38	Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. Toxicology and Applied Pharmacology, 2012, 262, 52-59.	2.8	98
39	Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Letters, 2005, 229, 1-11.	7.2	91
40	Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis, 2018, 39, 614-622.	2.8	90
41	Expression of Base Excision DNA Repair Genes Is a Sensitive Biomarker for in Vivo Detection of Chemical-induced Chronic Oxidative Stress. Cancer Research, 2004, 64, 1050-1057.	0.9	89
42	Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. Mutation Research - Reviews in Mutation Research, 2014, 762, 22-36.	5.5	89
43	Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making. Environmental Health Perspectives, 2015, 123, 1232-1240.	6.0	89
44	Population-Based <i>in Vitro</i> Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study. Environmental Health Perspectives, 2015, 123, 458-466.	6.0	89
45	Population-Based Discovery of Toxicogenomics Biomarkers for Hepatotoxicity Using a Laboratory Strain Diversity Panel. Toxicological Sciences, 2009, 110, 235-243.	3.1	88
46	Indoor Air Pollutants and Health in the United Arab Emirates. Environmental Health Perspectives, 2012, 120, 687-694.	6.0	88
47	Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. , 2014, 141, 55-68.		88
48	Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology, 2015, 33, 933-940.	17.5	88
49	ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models. BMC Bioinformatics, 2018, 19, 80.	2.6	87
50	Phthalates Rapidly Increase Production of Reactive Oxygen Species in Vivo: Role of Kupffer Cells. Molecular Pharmacology, 2001, 59, 744-750.	2.3	86
51	IARC Monographs: 40 Years of Evaluating Carcinogenic Hazards to Humans. Environmental Health Perspectives, 2015, 123, 507-514.	6.0	86
52	Molecular Mechanisms of Fibrosis-Associated Promotion of Liver Carcinogenesis. Toxicological Sciences, 2013, 132, 53-63.	3.1	84
53	Mouse Liver Effects of Cyproconazole, a Triazole Fungicide: Role of the Constitutive Androstane Receptor. Toxicological Sciences, 2007, 99, 315-325.	3.1	83
54	Use of Cell Viability Assay Data Improves the Prediction Accuracy of Conventional Quantitative Structure–Activity Relationship Models of Animal Carcinogenicity. Environmental Health Perspectives, 2008, 116, 506-513.	6.0	82

#	Article	IF	CITATIONS
55	Standardizing Benchmark Dose Calculations to Improve Science-Based Decisions in Human Health Assessments. Environmental Health Perspectives, 2014, 122, 499-505.	6.0	82
56	Multicenter Study of Acetaminophen Hepatotoxicity Reveals the Importance of Biological Endpoints in Genomic Analyses. Toxicological Sciences, 2007, 99, 326-337.	3.1	79
57	Phenotypic Anchoring of Acetaminophen-Induced Oxidative Stress with Gene Expression Profiles in Rat Liver. Toxicological Sciences, 2006, 93, 213-222.	3.1	78
58	Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicology and Applied Pharmacology, 2013, 272, 67-76.	2.8	78
59	Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinformatics, 2007, 23, i401-i407.	4.1	77
60	ToxPi GUI: an interactive visualization tool for transparent integration of data from diverse sources of evidence. Bioinformatics, 2013, 29, 402-403.	4.1	74
61	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	6.0	74
62	Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma. Molecular Cancer, 2010, 9, 74.	19.2	70
63	Heading Down the Wrong Pathway: on the Influence of Correlation within Gene Sets. BMC Genomics, 2010, 11, 574.	2.8	69
64	A chemical–biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives. Green Chemistry, 2016, 18, 4407-4419.	9.0	69
65	Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease. Toxicology and Applied Pharmacology, 2008, 232, 236-243.	2.8	67
66	Protective effect of Juzenâ€ŧaihoâ€ŧo on hepatocarcinogenesis is mediated through the inhibition of Kupffer cellâ€induced oxidative stress. International Journal of Cancer, 2008, 123, 2503-2511.	5.1	66
67	ICAM-1 is involved in the mechanism of alcohol-induced liver injury: studies with knockout mice. American Journal of Physiology - Renal Physiology, 2001, 280, G1289-G1295.	3.4	65
68	The COVID-19 Pandemic Vulnerability Index (PVI) Dashboard: Monitoring County-Level Vulnerability Using Visualization, Statistical Modeling, and Machine Learning. Environmental Health Perspectives, 2021, 129, 17701.	6.0	65
69	Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data. Toxicological Sciences, 2012, 127, 1-9.	3.1	64
70	High-Content High-Throughput Assays for Characterizing the Viability and Morphology of Human iPSC-Derived Neuronal Cultures. Assay and Drug Development Technologies, 2014, 12, 536-547.	1.2	63
71	Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 110-123.	2.5	63
72	In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicology and Applied Pharmacology, 2017, 322, 60-74.	2.8	62

#	Article	IF	CITATIONS
73	Mechanisms of HCV-induced liver cancer: What did we learn from in vitro and animal studies?. Cancer Letters, 2014, 345, 210-215.	7.2	61
74	A Novel Two-Step Hierarchical Quantitative Structure–Activity Relationship Modeling Work Flow for Predicting Acute Toxicity of Chemicals in Rodents. Environmental Health Perspectives, 2009, 117, 1257-1264.	6.0	59
75	Alcohol and toxicity. Journal of Hepatology, 2013, 59, 387-388.	3.7	59
76	Technology Transfer of the Microphysiological Systems: A Case Study of the Human Proximal Tubule Tissue Chip. Scientific Reports, 2018, 8, 14882.	3.3	58
77	Novel Role of Oxidants in the Molecular Mechanism of Action of Peroxisome Proliferators. Antioxidants and Redox Signaling, 2000, 2, 607-621.	5.4	57
78	Spectrum of <i>HNF1A</i> Somatic Mutations in Hepatocellular Adenoma Differs From That in Patients With MODY3 and Suggests Genotoxic Damage. Diabetes, 2010, 59, 1836-1844.	0.6	57
79	Role of Kupffer cells and oxidants in signaling peroxisome proliferator-induced hepatocyte proliferation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 448, 179-192.	1.0	56
80	A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics. Frontiers in Genetics, 2017, 8, 168.	2.3	55
81	Genomic Profiling in Nuclear Receptor-Mediated Toxicity. Toxicologic Pathology, 2007, 35, 474-494.	1.8	54
82	Development of an Ion Mobility Spectrometry-Orbitrap Mass Spectrometer Platform. Analytical Chemistry, 2016, 88, 12152-12160.	6.5	54
83	Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 51-64.	1.5	54
84	Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1379-1389.	3.3	53
85	Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice. Hepatology, 2012, 56, 130-139.	7.3	52
86	Conditional Toxicity Value (CTV) Predictor: An <i>In Silico</i> Approach for Generating Quantitative Risk Estimates for Chemicals. Environmental Health Perspectives, 2018, 126, 057008.	6.0	52
87	Impaired Ras membrane association and activation in PPARα knockout mice after partial hepatectomy. American Journal of Physiology - Renal Physiology, 2003, 284, G302-G312.	3.4	51
88	Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver. DNA Repair, 2005, 4, 1099-1110.	2.8	51
89	From "weight of evidence―to quantitative data integration using multicriteria decision analysis and Bayesian methods. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 3-8. 	1.5	50
90	Genome-level analysis of genetic regulation of liver gene expression networks. Hepatology, 2007, 46, 548-557.	7.3	49

#	Article	IF	CITATIONS
91	Interstrain Differences in the Liver Effects of Trichloroethylene in a Multistrain Panel of Inbred Mice. Toxicological Sciences, 2011, 120, 206-217.	3.1	49
92	Interstrain differences in the severity of liver injury induced by a choline―and folateâ€deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB Journal, 2012, 26, 4592-4602.	0.5	49
93	Epithelial splicing regulatory protein 2–mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. Journal of Clinical Investigation, 2020, 130, 2129-2145.	8.2	49
94	Mechanisms of peroxisome proliferator-induced DNA hypomethylation in rat liverâ~†. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 644, 17-23.	1.0	48
95	Epigenetic Mechanisms of Mouse Interstrain Variability in Genotoxicity of the Environmental Toxicant 1,3-Butadiene. Toxicological Sciences, 2011, 122, 448-456.	3.1	48
96	Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. Toxicology and Applied Pharmacology, 2019, 381, 114711.	2.8	48
97	ROLE OF KUPFFER CELLS IN PEROXISOME PROLIFERATOR-INDUCED HEPATOCYTE PROLIFERATION*. Drug Metabolism Reviews, 1999, 31, 87-116.	3.6	47
98	Epigenetic aspects of genotoxic and nonâ€genotoxic hepatocarcinogenesis: Studies in rodents. Environmental and Molecular Mutagenesis, 2008, 49, 9-15.	2.2	47
99	Quantitative High-Throughput Screening for Chemical Toxicity in a Population-Based In Vitro Model. Toxicological Sciences, 2012, 126, 578-588.	3.1	47
100	A human population-based organotypic in vitro model for cardiotoxicity screening. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 441-452.	1.5	47
101	MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget, 2017, 8, 88517-88528.	1.8	46
102	Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 692, 26-33.	1.0	45
103	An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction. Environment International, 2020, 134, 105280.	10.0	45
104	Toxicogenetics: population-based testing of drug and chemical safety in mouse models. Pharmacogenomics, 2010, 11, 1127-1136.	1.3	44
105	Epigenetic Alterations in Liver of C57BL/6J Mice after Short-Term Inhalational Exposure to 1,3-Butadiene. Environmental Health Perspectives, 2011, 119, 635-640.	6.0	43
106	Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution. Inhalation Toxicology, 2016, 28, 251-259.	1.6	43
107	A tiered, Bayesian approach to estimating population variability for regulatory decision-making. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 377-388.	1.5	42
108	Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor α. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 625, 62-71.	1.0	40

#	Article	IF	CITATIONS
109	Genetic and epigenetic changes in fibrosisâ€associated hepatocarcinogenesis in mice. International Journal of Cancer, 2014, 134, 2778-2788.	5.1	39
110	In vitro screening for population variability in toxicity of pesticide-containing mixtures. Environment International, 2015, 85, 147-155.	10.0	39
111	Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-l-cysteine. Toxicology and Applied Pharmacology, 2009, 238, 90-99.	2.8	38
112	Liquid chromatography electrospray ionization tandem mass spectrometry analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicology, 2009, 262, 230-238.	4.2	38
113	Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse. Environmental Health Perspectives, 2014, 122, 456-463.	6.0	38
114	An empirical Bayes approach for multiple tissue eQTL analysis. Biostatistics, 2018, 19, 391-406.	1.5	37
115	Adiponectin Lowers Glucose Production by Increasing SOGA. American Journal of Pathology, 2010, 177, 1936-1945.	3.8	36
116	Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities. Mammalian Genome, 2018, 29, 182-189.	2.2	36
117	WY-14,643–Induced Cell Proliferation and Oxidative Stress in Mouse Liver are Independent of NADPH Oxidase. Toxicological Sciences, 2007, 98, 366-374.	3.1	35
118	FastMap: Fast eQTL mapping in homozygous populations. Bioinformatics, 2009, 25, 482-489.	4.1	35
119	Software Tools to Facilitate Systematic Review Used for Cancer Hazard Identification. Environmental Health Perspectives, 2018, 126, 104501.	6.0	35
120	Rapid Characterization of Emerging Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foams Using Ion Mobility Spectrometry–Mass Spectrometry. Environmental Science & Technology, 2020, 54, 15024-15034.	10.0	35
121	Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. PLoS Genetics, 2020, 16, e1008537.	3.5	35
122	Development of an intragastric enteral model in the mouse: studies of alcohol-induced liver disease using knockout technology. Journal of Hepato-Biliary-Pancreatic Surgery, 2000, 7, 395-400.	2.0	34
123	Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods. Toxicology and Applied Pharmacology, 2014, 280, 177-189.	2.8	34
124	Characterization of Variability in Toxicokinetics and Toxicodynamics of Tetrachloroethylene Using the Collaborative Cross Mouse Population. Environmental Health Perspectives, 2017, 125, 057006.	6.0	34
125	Risk Characterization and Probabilistic Concentration–Response Modeling of Complex Environmental Mixtures Using New Approach Methodologies (NAMs) Data from Organotypic <i>in Vitro</i> Human Stem Cell Assays. Environmental Health Perspectives, 2021, 129, 17004.	6.0	34
126	In Vitro Screening for Population Variability in Chemical Toxicity. Toxicological Sciences, 2011, 119, 398-407.	3.1	33

#	Article	IF	CITATIONS
127	Editor's Highlight: Collaborative Cross Mouse Population Enables Refinements to Characterization of the Variability in Toxicokinetics of Trichloroethylene and Provides Genetic Evidence for the Role of PPAR Pathway in Its Oxidative Metabolism. Toxicological Sciences, 2017, 158, 48-62.	3.1	32
128	Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. Toxicology and Applied Pharmacology, 2018, 339, 1-9.	2.8	32
129	Swift increase in alcohol metabolism (SIAM): understanding the phenomenon of hypermetabolism in liver. Alcohol, 2005, 35, 13-17.	1.7	31
130	Temporal correlation of pathology and DNA damage with gene expression in a choline-deficient model of rat liver injury. Hepatology, 2005, 42, 1137-1147.	7.3	31
131	Sex-specific gene expression in the BXD mouse liver. Physiological Genomics, 2010, 42, 456-468.	2.3	30
132	Increased incidence of aflatoxin B1â€induced liver tumors in hepatitis virus C transgenic mice. International Journal of Cancer, 2012, 130, 1347-1356.	5.1	30
133	Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. Scientific Reports, 2020, 10, 15558.	3.3	30
134	Mechanism for Prevention of Alcohol-Induced Liver Injury by Dietary Methyl Donors. Toxicological Sciences, 2010, 115, 131-139.	3.1	29
135	Key Characteristics of Human Hepatotoxicants as a Basis for Identification and Characterization of the Causes of Liver Toxicity. Hepatology, 2021, 74, 3486-3496.	7.3	29
136	Strainâ€dependent dysregulation of oneâ€carbon metabolism in male mice is associated with choline―and folateâ€deficient dietâ€induced liver injury. FASEB Journal, 2013, 27, 2233-2243.	0.5	28
137	Gene Expression and DNA Methylation Alterations in the Glycine N-Methyltransferase Gene in Diet-Induced Nonalcoholic Fatty Liver Disease-Associated Carcinogenesis. Toxicological Sciences, 2019, 170, 273-282.	3.1	28
138	Predicting tubular reabsorption with a human kidney proximal tubule tissue-on-a-chip and physiologically-based modeling. Toxicology in Vitro, 2020, 63, 104752.	2.4	28
139	Epigenetic Events Determine Tissue-Specific Toxicity of Inhalational Exposure to the Genotoxic Chemical 1,3-Butadiene in Male C57BL/6J Mice. Toxicological Sciences, 2014, 142, 375-384.	3.1	27
140	Comparative Analysis of the Relationship Between Trichloroethylene Metabolism and Tissue-Specific Toxicity Among Inbred Mouse Strains: Liver Effects. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 15-31.	2.3	27
141	Joint Effects of Alcohol Consumption and Polymorphisms in Alcohol and Oxidative Stress Metabolism Genes on Risk of Head and Neck Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2438-2449.	2.5	26
142	Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Toxicology, 2020, 445, 152601.	4.2	25
143	Time-course comparison of xenobiotic activators of CAR and PPARÎ \pm in mouse liver. Toxicology and Applied Pharmacology, 2009, 235, 199-207.	2.8	24
144	High-Content Assay Multiplexing for Vascular Toxicity Screening in Induced Pluripotent Stem Cell-Derived Endothelial Cells and Human Umbilical Vein Endothelial Cells. Assay and Drug Development Technologies, 2017, 15, 267-279.	1.2	24

#	Article	IF	CITATIONS
145	Oy Vey! A Comment on "Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships Outperforming Animal Test Reproducibility― Toxicological Sciences, 2019, 167, 3-4.	3.1	24
146	Cardiovascular Effects of Polychlorinated Biphenyls and Their Major Metabolites. Environmental Health Perspectives, 2020, 128, 77008.	6.0	24
147	Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS). Toxicology, 2021, 448, 152651.	4.2	24
148	Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity. Toxicology and Applied Pharmacology, 2010, 249, 208-216.	2.8	23
149	Grouping of Petroleum Substances as Example UVCBs by Ion Mobility-Mass Spectrometry to Enable Chemical Composition-Based Read-Across. Environmental Science & Technology, 2017, 51, 7197-7207.	10.0	23
150	Editor's Highlight: Comparative Dose-Response Analysis of Liver and Kidney Transcriptomic Effects of Trichloroethylene and Tetrachloroethylene in B6C3F1 Mouse. Toxicological Sciences, 2017, 160, 95-110.	3.1	23
151	Epigenetically mediated inhibition of Sâ€adenosylhomocysteine hydrolase and the associated dysregulation of 1â€carbon metabolism in nonalcoholic steatohepatitis and hepatocellular carcinoma. FASEB Journal, 2018, 32, 1591-1601.	0.5	23
152	Metabolism and Toxicity of Trichloroethylene and Tetrachloroethylene in Cytochrome P450 2E1 Knockout and Humanized Transgenic Mice. Toxicological Sciences, 2018, 164, 489-500.	3.1	23
153	Thorough QT/QTc in a Dish: An <i>In Vitro</i> Human Model That Accurately Predicts Clinical Concentrationâ€QTc Relationships. Clinical Pharmacology and Therapeutics, 2019, 105, 1175-1186.	4.7	23
154	Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident. Environmental Pollution, 2020, 265, 115009.	7.5	23
155	Rapid hazard characterization of environmental chemicals using a compendium of human cell lines from different organs. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 623-638.	1.5	23
156	Environmental exposures due to natural disasters. Reviews on Environmental Health, 2016, 31, 89-92.	2.4	22
157	Variation in DNA-Damage Responses to an Inhalational Carcinogen (1,3-Butadiene) in Relation to Strain-Specific Differences in Chromatin Accessibility and Gene Transcription Profiles in C57BL/6J and CAST/EiJ Mice. Environmental Health Perspectives, 2017, 125, 107006.	6.0	22
158	Baseline data for distribution of contaminants by natural disasters: results from a residential Houston neighborhood during Hurricane Harvey flooding. Heliyon, 2019, 5, e02860.	3.2	22
159	Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine, 2022, 247, 1-75.	2.4	22
160	Tissue- and strain-specific effects of a genotoxic carcinogen 1,3-butadiene on chromatin and transcription. Mammalian Genome, 2018, 29, 153-167.	2.2	21
161	Grouping of complex substances using analytical chemistry data: A framework for quantitative evaluation and visualization. PLoS ONE, 2019, 14, e0223517.	2.5	21
162	Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 887-902.	3.3	21

#	Article	IF	CITATIONS
163	The role of microRNAs in the development and progression of chemical-associated cancers. Toxicology and Applied Pharmacology, 2016, 312, 3-10.	2.8	20
164	A Bayesian Method for Population-wide Cardiotoxicity Hazard and Risk Characterization Using an <i>In Vitro</i> Human Model. Toxicological Sciences, 2020, 178, 391-403.	3.1	20
165	Curated Data In — Trustworthy <i>In Silico</i> Models Out: The Impact of Data Quality on the Reliability of Artificial Intelligence Models as Alternatives to Animal Testing. ATLA Alternatives To Laboratory Animals, 2021, 49, 73-82.	1.0	20
166	Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. Chemical Research in Toxicology, 2021, 34, 2110-2124.	3.3	20
167	Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression. Toxicology and Applied Pharmacology, 2007, 225, 267-277.	2.8	19
168	Impact of Nonalcoholic Fatty Liver Disease on Toxicokinetics of Tetrachloroethylene in Mice. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 17-28.	2.5	19
169	Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 37-52.	2.3	19
170	Characterization of the variability in the extent of nonalcoholic fatty liver induced by a highâ€fat diet in the genetically diverse Collaborative Cross mouse model. FASEB Journal, 2020, 34, 7773-7785.	0.5	19
171	Environmental impacts of Hurricane Florence flooding in eastern North Carolina: temporal analysis of contaminant distribution and potential human health risks. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 810-822.	3.9	19
172	Comparative Analysis of the Relationship Between Trichloroethylene Metabolism and Tissue-Specific Toxicity Among Inbred Mouse Strains: Kidney Effects. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 32-49.	2.3	18
173	Risk Characterization of Environmental Samples Using <i>In Vitro</i> Bioactivity and Polycyclic Aromatic Hydrocarbon Concentrations Data. Toxicological Sciences, 2021, 179, 108-120.	3.1	18
174	Computational tools for discovery and interpretation of expression quantitative trait loci. Pharmacogenomics, 2012, 13, 343-352.	1.3	17
175	Coâ€regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnology and Bioengineering, 2014, 111, 1018-1027.	3.3	17
176	Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. Journal of Hazardous Materials, 2022, 422, 126759.	12.4	17
177	Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium. Toxicological Sciences, 2022, 188, 143-152.	3.1	17
178	Replication and narrowing of gene expression quantitative trait loci using inbred mice. Mammalian Genome, 2009, 20, 437-446.	2.2	16
179	Simultaneous detection of the tetrachloroethylene metabolites S-(1,2,2-trichlorovinyl) glutathione, S-(1,2,2-trichlorovinyl)-L-cysteine, and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine in multiple mouse tissues via ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80,	2.3	16
180	Analysis of per- and polyfluoroalkyl substances in Houston Ship Channel and Galveston Bay following a large-scale industrial fire using ion-mobility-spectrometry-mass spectrometry. Journal of Environmental Sciences, 2022, 115, 350-362.	6.1	16

#	Article	IF	CITATIONS
181	Oil Irradiation Experiments Document Changes in Oil Properties, Molecular Composition, and Dispersant Effectiveness Associated with Oil Photo-Oxidation. Environmental Science & Technology, 2022, 56, 7789-7799.	10.0	16
182	MicroRNA expression in the livers of inbred mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 714, 126-133.	1.0	15
183	gQTL: A Web Application for QTL Analysis Using the Collaborative Cross Mouse Genetic Reference Population. G3: Genes, Genomes, Genetics, 2018, 8, 2559-2562.	1.8	15
184	Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene. Environmental Health Perspectives, 2019, 127, 67011.	6.0	15
185	Histopathological and Molecular Signatures of a Mouse Model of Acute-on-Chronic Alcoholic Liver Injury Demonstrate Concordance With Human Alcoholic Hepatitis. Toxicological Sciences, 2019, 170, 427-437.	3.1	15
186	Transcriptional Networks in S. cerevisiae Linked to an Accumulation of Base Excision Repair Intermediates. PLoS ONE, 2007, 2, e1252.	2.5	14
187	Effects of polymorphisms in alcohol metabolism and oxidative stress genes on survival from head and neck cancer. Cancer Epidemiology, 2013, 37, 479-491.	1.9	14
188	A systematic approach for identifying and presenting mechanistic evidence in human health assessments. Regulatory Toxicology and Pharmacology, 2013, 67, 266-277.	2.7	14
189	A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways. Toxicology and Applied Pharmacology, 2016, 310, 129-139.	2.8	14
190	Comparative analysis of Rapid Equilibrium Dialysis (RED) and solid phase micro-extraction (SPME) methods for In Vitro-In Vivo extrapolation of environmental chemicals. Toxicology in Vitro, 2019, 60, 245-251.	2.4	14
191	Population-Based Analysis of DNA Damage and Epigenetic Effects of 1,3-Butadiene in the Mouse. Chemical Research in Toxicology, 2019, 32, 887-898.	3.3	14
192	Integrative Approaches for Predicting In Vivo Effects of Chemicals from their Structural Descriptors and the Results of Short-Term Biological Assays. Current Topics in Medicinal Chemistry, 2014, 14, 1356-1364.	2.1	14
193	Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 968-978.	4.4	13
194	Population-based dose–response analysis of liver transcriptional response to trichloroethylene in mouse. Mammalian Genome, 2018, 29, 168-181.	2.2	13
195	The Impact of Novel Assessment Methodologies in Toxicology on Green Chemistry and Chemical Alternatives. Toxicological Sciences, 2018, 161, 276-284.	3.1	13
196	Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology, 2018, 409, 33-43.	4.2	13
197	Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues. Archives of Toxicology, 2019, 93, 791-800.	4.2	13
198	Grouping of UVCB substances with new approach methodologies (NAMs) data. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 123-137.	1.5	13

#	Article	IF	CITATIONS
199	PPARα-Dependent Induction of Liver Microsomal Esterification of Estradiol and Testosterone by a Prototypical Peroxisome Proliferator. Endocrinology, 2001, 142, 3554-3557.	2.8	12
200	Nonalcoholic Fatty Liver Disease Is a Susceptibility Factor for Perchloroethylene-Induced Liver Effects in Mice. Toxicological Sciences, 2017, 159, 102-113.	3.1	12
201	miR-1247 blocks SOX9–mediated regeneration in alcohol- and fibrosis-associated acute kidney injury in mice. Toxicology, 2017, 384, 40-49.	4.2	12
202	Multi-dimensional in vitro bioactivity profiling for grouping of glycol ethers. Regulatory Toxicology and Pharmacology, 2019, 101, 91-102.	2.7	12
203	Heart Muscle Microphysiological System for Cardiac Liability Prediction of Repurposed COVID-19 Therapeutics. Frontiers in Pharmacology, 2021, 12, 684252.	3.5	12
204	Dietary Methyl Deficiency, microRNA Expression and Susceptibility to Liver Carcinogenesis. World Review of Nutrition and Dietetics, 2010, 101, 123-130.	0.3	11
205	Differentially expressed MicroRNAs provide mechanistic insight into fibrosis-associated liver carcinogenesis in mice. Molecular Carcinogenesis, 2016, 55, 808-817.	2.7	11
206	Genetic and epigenetic determinants of inter-individual variability in responses to toxicants. Current Opinion in Toxicology, 2017, 6, 50-59.	5.0	11
207	<i>In Vitro</i> Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances. Toxicological Sciences, 2020, 174, 168-177.	3.1	11
208	A Comparative Analysis of Analytical Techniques for Rapid Oil Spill Identification. Environmental Toxicology and Chemistry, 2021, 40, 1034-1049.	4.3	11
209	Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regulatory Toxicology and Pharmacology, 2022, 132, 105197.	2.7	11
210	Sustained formation of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor-α, but not NADPH oxidase. Free Radical Biology and Medicine, 2007, 42, 335-342.	2.9	10
211	Acetaminophen-induced acute liver injury in HCV transgenic mice. Toxicology and Applied Pharmacology, 2013, 266, 224-232.	2.8	10
212	The Contribution of Peroxisome Proliferator-Activated Receptor Alpha to the Relationship Between Toxicokinetics and Toxicodynamics of Trichloroethylene. Toxicological Sciences, 2015, 147, 339-349.	3.1	10
213	High-Content Assay Multiplexing for Muscle Toxicity Screening in Human-Induced Pluripotent Stem Cell-Derived Skeletal Myoblasts. Assay and Drug Development Technologies, 2018, 16, 333-342.	1.2	10
214	Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. Mutation Research - Reviews in Mutation Research, 2022, 789, 108408.	5.5	10
215	Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. vulgaris. Journal of Hazardous Materials, 2021, 408, 124425.	12.4	9
216	Data Processing Workflow to Identify Structurally Related Compounds in Petroleum Substances Using Ion Mobility Spectrometry–Mass Spectrometry. Energy & Fuels, 2021, 35, 10529-10539.	5.1	9

#	Article	IF	CITATIONS
217	Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites. Analytical and Bioanalytical Chemistry, 2022, 414, 1245-1258.	3.7	9
218	Dietary Methyl Deficiency, microRNA Expression and Susceptibility to Liver Carcinogenesis. Journal of Nutrigenetics and Nutrigenomics, 2010, 3, 259-266.	1.3	8
219	Chronic administration of ethanol leads to an increased incidence of hepatocellular adenoma by promoting H-ras-mutated cells. Cancer Letters, 2011, 301, 161-167.	7.2	8
220	Conducting Environmental Health Research in the Arabian Middle East: Lessons Learned and Opportunities. Environmental Health Perspectives, 2012, 120, 632-636.	6.0	8
221	Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques. Computer Aided Chemical Engineering, 2018, 43, 421-426.	0.5	8
222	Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicology and Applied Pharmacology, 2018, 352, 142-152.	2.8	8
223	Tissue-Engineered Bone Tumor as a Reproducible Human <i>in Vitro</i> Model for Studies of Anticancer Drugs. Toxicological Sciences, 2020, 173, 65-76.	3.1	8
224	A Novel Mouse Model of Acuteâ€onâ€Chronic Cholestatic Alcoholic Liver Disease: A Systems Biology Comparison With Human Alcoholic Hepatitis. Alcoholism: Clinical and Experimental Research, 2020, 44, 87-101.	2.4	8
225	Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. Journal of Nutritional Biochemistry, 2020, 86, 108496.	4.2	8
226	Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food and Chemical Toxicology, 2021, 149, 111979.	3.6	8
227	Quantitative <i>In Vitro</i> -to- <i>In Vivo</i> Extrapolation for Mixtures: A Case Study of Superfund Priority List Pesticides. Toxicological Sciences, 2021, 183, 60-69.	3.1	8
228	Characterization of compositional variability in petroleum substances. Fuel, 2022, 317, 123547.	6.4	8
229	Potential Human Health Hazard of Post-Hurricane Harvey Sediments in Galveston Bay and Houston Ship Channel: A Case Study of Using In Vitro Bioactivity Data to Inform Risk Management Decisions. International Journal of Environmental Research and Public Health, 2021, 18, 13378.	2.6	8
230	Chemistry-Wide Association Studies (CWAS): A Novel Framework for Identifying and Interpreting Structure–Activity Relationships. Journal of Chemical Information and Modeling, 2018, 58, 2203-2213.	5.4	7
231	Long-Term Combinatorial Exposure to Trichloroethylene and Inorganic Arsenic in Genetically Heterogeneous Mice Results in Renal Tubular Damage and Cancer-Associated Molecular Changes. G3: Genes, Genomes, Genetics, 2019, 9, 1729-1737.	1.8	7
232	The DEN and CCl ₄ â€Induced Mouse Model of Fibrosis and Inflammationâ€Associated Hepatocellular Carcinoma. Current Protocols, 2021, 1, e211.	2.9	7
233	Prediction of hepatic drug clearance with a human microfluidic four-cell liver acinus microphysiology system. Toxicology, 2021, 463, 152954.	4.2	7
234	Decision-Making with New Approach Methodologies: Time to Replace Default Uncertainty Factors with Data. Toxicological Sciences, 2022, 189, 148-149.	3.1	7

#	Article	IF	CITATIONS
235	Characterization of copy number alterations in a mouse model of fibrosisâ€associated hepatocellular carcinoma reveals concordance with human disease. Cancer Medicine, 2016, 5, 574-585.	2.8	6
236	Re: â€~Application of the key characteristics of carcinogens in cancer hazard evaluation': response to Goodman, Lynch and Rhomberg. Carcinogenesis, 2018, 39, 1091-1093.	2.8	6
237	Introduction to mammalian genome special issue: the combined role of genetics and environment relevant to human disease outcomes. Mammalian Genome, 2018, 29, 1-4.	2.2	6
238	Intra- and Inter-Species Variability in Urinary N7-(1-Hydroxy-3-buten-2-yl)guanine Adducts Following Inhalation Exposure to 1,3-Butadiene. Chemical Research in Toxicology, 2021, 34, 2375-2383.	3.3	6
239	A tiered approach to population-based in vitro testing for cardiotoxicity: Balancing estimates of potency and variability. Journal of Pharmacological and Toxicological Methods, 2022, 114, 107154.	0.7	6
240	Spatial and Temporal Analysis of Impacts of Hurricane Florence on Criteria Air Pollutants and Air Toxics in Eastern North Carolina. International Journal of Environmental Research and Public Health, 2022, 19, 1757.	2.6	6
241	Modulation of Tetrachloroethylene-Associated Kidney Effects by Nonalcoholic Fatty Liver or Steatohepatitis in Male C57BL/6J Mice. Toxicological Sciences, 2019, 167, 126-137.	3.1	5
242	Editorial overview of the special issue on application of tissue chips in toxicology. Toxicology, 2021, 450, 152687.	4.2	5
243	Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. Toxicological Sciences, 2021, 182, 168-182.	3.1	5
244	Spatial and temporal distribution of surface water contaminants in the Houston Ship Channel after the Intercontinental Terminal Company Fire. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 887-899.	3.9	5
245	A new approach method for characterizing inter-species toxicodynamic variability. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 1020-1039.	2.3	5
246	Non-alcoholic fatty liver disease-associated DNA methylation and gene expression alterations in the livers of Collaborative Cross mice fed an obesogenic high-fat and high-sucrose diet. Epigenetics, 2022, 17, 1462-1476.	2.7	5
247	SAFEGUI: resampling-based tests of categorical significance in gene expression data made easy. Bioinformatics, 2009, 25, 541-542.	4.1	4
248	PBPK modeling of impact of nonalcoholic fatty liver disease on toxicokinetics of perchloroethylene in mice. Toxicology and Applied Pharmacology, 2020, 400, 115069.	2.8	4
249	Quantitative NanoLC/NSI+-HRMS Method for 1,3-Butadiene Induced bis-N7-guanine DNA-DNA Cross-Links in Urine. Toxics, 2021, 9, 247.	3.7	4
250	A Model of Human Small Airway on a Chip for Studies of Subacute Effects of Inhalation Toxicants. Toxicological Sciences, 2022, 187, 267-278.	3.1	4
251	Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice. Regulatory Toxicology and Pharmacology, 2022, 132, 105171.	2.7	4
252	Integrating nonlinear analysis and machine learning for human induced pluripotent stem cellâ€based drug cardiotoxicity testing. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 732-743.	2.7	4

#	Article	IF	CITATIONS
253	Lipidomic profiling of the hepatic esterified fatty acid composition in diet-induced nonalcoholic fatty liver disease in genetically diverse Collaborative Cross mice. Journal of Nutritional Biochemistry, 2022, 109, 109108.	4.2	3
254	Reply to: "The autophagic response to alcohol toxicity: The missing layer― Journal of Hepatology, 2013, 59, 399-400.	3.7	2
255	Questioning Existing Cancer Hazard Evaluation Standards in the Name of Statistics. Toxicological Sciences, 2020, 177, 521-522.	3.1	2
256	Editorial overview of the special issue on genomic toxicology epigenetics. Current Opinion in Toxicology, 2017, 6, i-iii.	5.0	1
257	Title is missing!. , 2020, 16, e1008537.		0
258	Title is missing!. , 2020, 16, e1008537.		0
259	Title is missing!. , 2020, 16, e1008537.		0
260	Title is missing!. , 2020, 16, e1008537.		0