
Franca Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. International Journal of Oncology, 2022, 60, .	3.3	4
2	Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Frontiers in Oncology, 2021, 11, 797265.	2.8	13
3	Heat shock proteins in thyroid malignancies: Potential therapeutic targets for poorly-differentiated and anaplastic tumours?. Molecular and Cellular Endocrinology, 2020, 502, 110676.	3.2	5
4	Gene Copy Number and Post-Transductional Mechanisms Regulate TRAP1 Expression in Human Colorectal Carcinomas. International Journal of Molecular Sciences, 2020, 21, 145.	4.1	3
5	TRAP1 Regulates Wnt/β-Catenin Pathway through LRP5/6 Receptors Expression Modulation. International Journal of Molecular Sciences, 2020, 21, 7526.	4.1	6
6	TRAP1 enhances Warburg metabolism through modulation of PFK1 expression/activity and favors resistance to EGFR inhibitors in human colorectal carcinomas. Molecular Oncology, 2020, 14, 3030-3047.	4.6	19
7	IDH1 Targeting as a New Potential Option for Intrahepatic Cholangiocarcinoma Treatment—Current State and Future Perspectives. Molecules, 2020, 25, 3754.	3.8	18
8	Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules, 2020, 10, 135.	4.0	43
9	Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer. Cells, 2020, 9, 828.	4.1	41
10	Different mechanisms underlie IL-6 release in chemosensitive and chemoresistant ovarian carcinoma cells. American Journal of Cancer Research, 2020, 10, 2596-2602.	1.4	2
11	Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target?. Histology and Histopathology, 2020, 35, 25-37.	0.7	4
12	Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression. Cells, 2019, 8, 798.	4.1	31
13	HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells, 2019, 8, 532.	4.1	68
14	Endoplasmic Reticulum Stress and Unfolded Protein Response in Breast Cancer: The Balance between Apoptosis and Autophagy and Its Role in Drug Resistance. International Journal of Molecular Sciences, 2019, 20, 857.	4.1	113
15	Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Research, 2018, 46, 12067-12086.	14.5	20
16	TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor. Genes, 2018, 9, 195.	2.4	65
17	TRAP1., 2018, , 5680-5690.		0
18	Stress-Adaptive Response in Ovarian Cancer Drug Resistance. Advances in Protein Chemistry and Structural Biology, 2017, 108, 163-198.	2.3	34

2

FRANCA ESPOSITO

#	Article	IF	CITATIONS
19	Regulation of sub-compartmental targeting and folding properties of the Prion-like protein Shadoo. Scientific Reports, 2017, 7, 3731.	3.3	14
20	TRAP1 controls cell cycle G2–M transition through the regulation of CDK1 and MAD2 expression/ubiquitination. Journal of Pathology, 2017, 243, 123-134.	4.5	34
21	TRAP1: a viable therapeutic target for future cancer treatments?. Expert Opinion on Therapeutic Targets, 2017, 21, 805-815.	3.4	30
22	TRAP1 protein signature predicts outcome in human metastatic colorectal carcinoma. Oncotarget, 2017, 8, 21229-21240.	1.8	18
23	TRAP1 downregulation in human ovarian cancer enhances invasion and epithelial–mesenchymal transition. Cell Death and Disease, 2016, 7, e2522-e2522.	6.3	40
24	Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death and Differentiation, 2016, 23, 1542-1554.	11.2	154
25	TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death and Differentiation, 2016, 23, 1792-1803.	11.2	47
26	Vascular effects of linagliptin in nonâ€obese diabetic mice are glucoseâ€independent and involve positive modulation of the endothelial nitric oxide synthase (<scp>eNOS</scp>)/caveolinâ€1 (<scp>CAV</scp> â€1) pathway. Diabetes, Obesity and Metabolism, 2016, 18, 1236-1243.	4.4	29
27	TRAP1 regulates cell cycle and apoptosis in thyroid carcinoma cells. Endocrine-Related Cancer, 2016, 23, 699-709.	3.1	24
28	TRAP1., 2016,, 1-11.		0
29	TRAP1 controls cell migration of cancer cells in metabolic stress conditions: Correlations with AKT/p70S6K pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2570-2579.	4.1	23
30	Crucial role of androgen receptor in vascular <scp>H₂S</scp> biosynthesis induced by testosterone. British Journal of Pharmacology, 2015, 172, 1505-1515.	5.4	28
31	Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: A novel strategy for human BRAF-driven colorectal carcinoma. Oncotarget, 2015, 6, 22298-22309.	1.8	36
32	ER stress protection in cancer cells: the multifaceted role of the heat shock protein TRAP1. Endoplasmic Reticulum Stress in Diseases, 2014, 1, .	0.2	1
33	TRAP1 revisited: Novel localizations and functions of a â€~next-generation' biomarker (Review). International Journal of Oncology, 2014, 45, 969-977.	3.3	50
34	TRAP1 Is Involved in BRAF Regulation and Downstream Attenuation of ERK Phosphorylation and Cell-Cycle Progression: A Novel Target for BRAF-Mutated Colorectal Tumors. Cancer Research, 2014, 74, 6693-6704.	0.9	43
35	Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney International, 2014, 85, 1310-1317.	5.2	106
36	Mass Spectrometric/Bioinformatic Identification of a Protein Subset That Characterizes the Cellular Activity of Anticancer Peptides. Journal of Proteome Research, 2014, 13, 5250-5261.	3.7	22

FRANCA ESPOSITO

#	Article	IF	CITATIONS
37	TRAP1â€dependent regulation of p70S6K is involved in the attenuation of protein synthesis and cell migration: Relevance in human colorectal tumors. Molecular Oncology, 2014, 8, 1482-1494.	4.6	32
38	TRAP1 role in endoplasmic reticulum stress protection favors resistance to anthracyclins in breast carcinoma cells. International Journal of Oncology, 2014, 44, 573-582.	3.3	27
39	The Mitochondrial Chaperone TRAP1 Promotes Neoplastic Growth by Inhibiting Succinate Dehydrogenase. Cell Metabolism, 2013, 17, 988-999.	16.2	217
40	Resistance to paclitxel in breast carcinoma cells requires a quality control of mitochondrial antiapoptotic proteins by TRAP1. Molecular Oncology, 2013, 7, 895-906.	4.6	68
41	Translational control in the stress adaptive response of cancer cells: a novel role for the heat shock protein TRAP1. Cell Death and Disease, 2013, 4, e851-e851.	6.3	55
42	TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins. Cell Death and Differentiation, 2012, 19, 592-604.	11.2	82
43	New insights into TRAP1 pathway. American Journal of Cancer Research, 2012, 2, 235-48.	1.4	26
44	The HIV-1 Transactivator Factor (Tat) Induces Enterocyte Apoptosis through a Redox-Mediated Mechanism. PLoS ONE, 2011, 6, e29436.	2.5	53
45	The ribonuclease/angiogenin inhibitor is also present in mitochondria and nuclei. FEBS Letters, 2011, 585, 613-617.	2.8	30
46	Sorcin Induces a Drug-Resistant Phenotype in Human Colorectal Cancer by Modulating Ca2+ Homeostasis. Cancer Research, 2011, 71, 7659-7669.	0.9	78
47	Insulin-resistant conditions: A favorable milieu for aggressive drug-resistant malignancies. Journal of Gastrointestinal Oncology, 2011, 2, 11-2.	1.4	5
48	Heat shock proteins, cell survival and drug resistance: The mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecologic Oncology, 2010, 117, 177-182.	1.4	83
49	TRAP1 and SORCIN cooperate in a survival pathway responsible for inducing drug-resistance in human colorectal carcinoma (CRC). BMC Proceedings, 2010, 4, .	1.6	1
50	Mitochondrial Chaperone Trap1 and the Calcium Binding Protein Sorcin Interact and Protect Cells against Apoptosis Induced by Antiblastic Agents. Cancer Research, 2010, 70, 6577-6586.	0.9	120
51	Adaptation to Oxidative Stress, Chemoresistance, and Cell Survival. Antioxidants and Redox Signaling, 2009, 11, 2701-2716.	5.4	186
52	TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptotis in human colorectal carcinoma cells. Cancer Letters, 2009, 279, 39-46.	7.2	117
53	The cytosolic ribonuclease inhibitor contributes to intracellular redox homeostasis. FEBS Letters, 2007, 581, 930-934.	2.8	36
54	Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress, 2007, 10, 342-350.	1.8	141

FRANCA ESPOSITO

#	Article	IF	CITATIONS
55	AROS-29 is involved in adaptive response to oxidative stress. Free Radical Research, 2006, 40, 467-476.	3.3	17
56	Oxidative DNA Damage and Activation of c-Jun N-Terminal Kinase Pathway in Fibroblasts from Patients with Hereditary Spastic Paraplegia. Cellular and Molecular Neurobiology, 2005, 25, 1245-1254.	3.3	9
57	Low-affinity receptor-mediated induction of superoxide by N-formyl-methionyl-leucyl-phenylalanine and WKYMVm in IMR90 human fibroblasts. Free Radical Biology and Medicine, 2004, 36, 189-200.	2.9	20
58	Redox Control of Signal Transduction, Gene Expression and Cellular Senescence. Neurochemical Research, 2004, 29, 617-628.	3.3	109
59	LOW-AFFINITY RECEPTOR-MEDIATED INDUCTION OF SUPEROXIDE BY N-FORMYL-METHIONYL-LEUCYL-PHENYLALANINE AND WKYMVm IN IMR90 HUMAN FIBROBLASTS. Free Radical Biology and Medicine, 2003, 36, 189-189.	2.9	0
60	Protein Kinase B Activation by Reactive Oxygen Species Is Independent of Tyrosine Kinase Receptor Phosphorylation and Requires Src Activity. Journal of Biological Chemistry, 2003, 278, 20828-20834.	3.4	103
61	[22] Generation of prooxidant conditions in intact cells to induce modifications of cell cycle regulatory proteins. Methods in Enzymology, 2002, 352, 258-268.	1.0	13
62	Inhibition of NADH/NADPH Oxidase Affects Signal Transduction by Growth Factor Receptors in Normal Fibroblasts. Archives of Biochemistry and Biophysics, 2002, 397, 253-257.	3.0	28
63	Regulation of p21 waf1/cip1 Expression by Intracellular Redox Conditions. IUBMB Life, 2001, 52, 67-70.	3.4	24
64	Retinoblastoma protein dephosphorylation is an early event of cellular response to prooxidant conditions. FEBS Letters, 2000, 470, 211-215.	2.8	32
65	In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cycle-specific arrest. Molecular Microbiology, 1999, 32, 753-764.	2.5	23
66	A new p21waf1/cip1 isoform is an early event of cell response to oxidative stress. Cell Death and Differentiation, 1998, 5, 940-945.	11.2	28
67	Gene Regulation by Reactive Oxygen Species. Current Topics in Cellular Regulation, 1997, 35, 123-148.	9.6	81
68	Redox-Mediated Regulation of p21Waf1/Cip1 Expression Involves a Post-Transcriptional Mechanism and Activation of the Mitogen-Activated Protein Kinase Pathway. FEBS Journal, 1997, 245, 730-737.	0.2	97
69	DNA binding activity of the glucocorticoid receptor is sensitive to redox changes in intact cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 308-314.	2.4	48
70	A p53-independent Pathway for Activation of WAF1/CIP1 Expression Following Oxidative Stress. Journal of Biological Chemistry, 1995, 270, 29386-29391.	3.4	213
71	Isolation and Structural Characterization of the Rat Gene Encoding the Brain-Specific snRNP-Associated Polypeptide "N". Biochemical and Biophysical Research Communications, 1993, 195, 317-326.	2.1	0
72	Isolation of cDNA Fragments Hybridizing to Rat Brain-Specific mRNAs. Developmental Neuroscience, 1990, 12, 373-381.	2.0	16

#	Article	IF	CITATIONS
73	Supercoiling in prokaryotic and eukaryotic DNA: changes in response to topological perturbation of plasmids inE. coliand SV40in vitro, in nuclei and in CV-1 cells. Nucleic Acids Research, 1987, 15, 5105-5124.	14.5	53
74	Structure and in vitro transcription of tRNA gene clusters containing the primers of MuLV reverse transcriptase. FEBS Journal, 1986, 158, 437-442.	0.2	20
75	Determination of pseudouridine and other nucleosides in human blood serum by high-performance liquid chromatography. Analytical Biochemistry, 1983, 130, 19-26.	2.4	47