
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reliability of the NIH toolbox cognitive battery in children and adolescents: a 3-year longitudinal examination. Psychological Medicine, 2022, 52, 1718-1727.	4.5	32
2	Group Sparse Joint Non-Negative Matrix Factorization on Orthogonal Subspace for Multi-Modal Imaging Genetics Data Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 479-490.	3.0	10
3	Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint. IEEE Transactions on Medical Imaging, 2022, 41, 667-679.	8.9	11
4	Brain Functional Connectivity Analysis via Graphical Deep Learning. IEEE Transactions on Biomedical Engineering, 2022, 69, 1696-1706.	4.2	5
5	Individual differences in amygdala volumes predict changes in functional connectivity between subcortical and cognitive control networks throughout adolescence. NeuroImage, 2022, 247, 118852.	4.2	3
6	Building a Risk Prediction Model for Postoperative Pulmonary Vein Obstruction via Quantitative Analysis of CTA Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3127-3138.	6.3	3
7	Trauma moderates the development of the oscillatory dynamics serving working memory in a sex-specific manner. Cerebral Cortex, 2022, 32, 5206-5215.	2.9	5
8	Developmental trajectory of MEG resting-state oscillatory activity in children and adolescents: a longitudinal reliability study. Cerebral Cortex, 2022, 32, 5404-5419.	2.9	10
9	Deep Learning in Neuroimaging: Promises and challenges. IEEE Signal Processing Magazine, 2022, 39, 87-98.	5.6	25
10	Altered resting fMRI spectral power in data-driven brain networks during development: A longitudinal study. Journal of Neuroscience Methods, 2022, 372, 109537.	2.5	2
11	Phenotype guided interpretable graph convolutional network analysis of fMRI data reveals changing brain connectivity during adolescence. , 2022, , .		1
12	Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences. Journal of Neuroscience Methods, 2022, 372, 109539.	2.5	0
13	Longitudinal changes in the neural oscillatory dynamics underlying abstract reasoning in children and adolescents. NeuroImage, 2022, 253, 119094.	4.2	3
14	Amygdala and hippocampal subregions mediate outcomes following trauma during typical development: Evidence from high-resolution structural MRI. Neurobiology of Stress, 2022, 18, 100456.	4.0	5
15	Left amygdala structure mediates longitudinal associations between exposure to threat and longâ€ŧerm psychiatric symptomatology in youth. Human Brain Mapping, 2022, 43, 4091-4102.	3.6	4
16	Decomposition-Based Correlation Learning for Multi-Modal MRI-Based Classification of Neuropsychiatric Disorders. Frontiers in Neuroscience, 2022, 16, .	2.8	4
17	An enhanced multi-modal brain graph network for classifying neuropsychiatric disorders. Medical Image Analysis, 2022, 81, 102550.	11.6	15
18	Detecting abnormal connectivity in schizophrenia via a joint directed acyclic graph estimation model. NeuroImage, 2022, 260, 119451.	4.2	4

#	Article	IF	CITATIONS
19	A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1350-1360.	3.0	4
20	The Developmental Chronnecto-Genomics (Dev-CoG) study: A multimodal study on the developing brain. NeuroImage, 2021, 225, 117438.	4.2	34
21	Correlation Guided Graph Learning to Estimate Functional Connectivity Patterns From fMRI Data. IEEE Transactions on Biomedical Engineering, 2021, 68, 1154-1165.	4.2	5
22	Multi-Paradigm fMRI Fusion via Sparse Tensor Decomposition in Brain Functional Connectivity Study. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1712-1723.	6.3	7
23	An ensemble hybrid feature selection method for neuropsychiatric disorder classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	3.0	5
24	Functional network estimation using multigraph learning with application to brain maturation study. Human Brain Mapping, 2021, 42, 2880-2892.	3.6	3
25	A Joint Analysis of Multi-Paradigm fMRI Data With Its Application to Cognitive Study. IEEE Transactions on Medical Imaging, 2021, 40, 951-962.	8.9	7
26	Sparse deep dictionary learning identifies differences of time-varying functional connectivity in brain neuro-developmental study. Neural Networks, 2021, 135, 91-104.	5.9	5
27	Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder. Human Brain Mapping, 2021, 42, 2691-2705.	3.6	23
28	Restingâ€state functional connectivity of the human hippocampus in periadolescent children: Associations with age and memory performance. Human Brain Mapping, 2021, 42, 3620-3642.	3.6	4
29	Interpretable Multimodal Fusion Networks Reveal Mechanisms of Brain Cognition. IEEE Transactions on Medical Imaging, 2021, 40, 1474-1483.	8.9	30
30	Neural oscillations underlying selective attention follow sexually divergent developmental trajectories during adolescence. Developmental Cognitive Neuroscience, 2021, 49, 100961.	4.0	16
31	Modular and state-relevant functional network connectivity in high-frequency eyes open vs eyes closed resting fMRI data. Journal of Neuroscience Methods, 2021, 358, 109202.	2.5	8
32	A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. Aging, 2021, 13, 20629-20650.	3.1	19
33	Multiview Diffusion Map Improves Prediction of Fluid Intelligence With Two Paradigms of fMRI Analysis. IEEE Transactions on Biomedical Engineering, 2021, 68, 2529-2539.	4.2	11
34	A generalized kernel machine approach to identify higher-order composite effects in multi-view datasets, with application to adolescent brain development and osteoporosis. Journal of Biomedical Informatics, 2021, 120, 103854.	4.3	2
35	Sexually dimorphic development in the cortical oscillatory dynamics serving early visual processing. Developmental Cognitive Neuroscience, 2021, 50, 100968.	4.0	7
36	Frontoparietal network and neuropsychological measures in typically developing children. Neuropsychologia, 2021, 159, 107914.	1.6	3

#	Article	IF	CITATIONS
37	A deep autoencoder with sparse and graph Laplacian regularization for characterizing dynamic functional connectivity during brain development. Neurocomputing, 2021, 456, 97-108.	5.9	6
38	Subclinical Anxiety and Posttraumatic Stress Influence Cortical Thinning During Adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 1288-1299.	0.5	7
39	Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neurolmage, 2021, 244, 118552.	4.2	19
40	Ensemble Manifold Regularized Multi-Modal Graph Convolutional Network for Cognitive Ability Prediction. IEEE Transactions on Biomedical Engineering, 2021, 68, 3564-3573.	4.2	20
41	HOPS: A Fast Algorithm for Segmenting Piecewise Polynomials of Arbitrary Orders. IEEE Access, 2021, 9, 155977-155987.	4.2	3
42	Stability of functional network connectivity (FNC) values across multiple spatial normalization pipelines in spatially constrained independent component analysis. , 2021, , .		5
43	Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1671-1681.	3.0	12
44	Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia. Computer Methods and Programs in Biomedicine, 2020, 183, 105073.	4.7	34
45	Traumatic Events Are Associated with Diverse Psychological Symptoms in Typically-Developing Children. Journal of Child and Adolescent Trauma, 2020, 13, 381-388.	1.9	6
46	Multimodal Sparse Classifier for Adolescent Brain Age Prediction. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 336-344.	6.3	13
47	A Manifold Regularized Multi-Task Learning Model for IQ Prediction From Two fMRI Paradigms. IEEE Transactions on Biomedical Engineering, 2020, 67, 796-806.	4.2	27
48	Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model. IEEE Transactions on Medical Imaging, 2020, 39, 488-498.	8.9	33
49	Biomarker Identification Through Integrating fMRI and Epigenetics. IEEE Transactions on Biomedical Engineering, 2020, 67, 1186-1196.	4.2	7
50	Joint Bayesian-Incorporating Estimation of Multiple Gaussian Graphical Models to Study Brain Connectivity Development in Adolescence. IEEE Transactions on Medical Imaging, 2020, 39, 357-365.	8.9	4
51	Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data With a Phase Sparsity Constraint. IEEE Transactions on Medical Imaging, 2020, 39, 844-853.	8.9	20
52	Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data. IEEE Transactions on Medical Imaging, 2020, 39, 1746-1758.	8.9	36
53	Optimized Combination of Multiple Graphs With Application to the Integration of Brain Imaging and (epi)Genomics Data. IEEE Transactions on Medical Imaging, 2020, 39, 1801-1811.	8.9	7
54	A GICA-TVGL framework to study sex differences in resting state fMRI dynamic connectivity. Journal of Neuroscience Methods, 2020, 332, 108531.	2.5	11

#	Article	IF	CITATIONS
55	Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fMRI. NeuroImage, 2020, 221, 117190.	4.2	18
56	Parietal Oscillatory Dynamics Mediate Developmental Improvement in Motor Performance. Cerebral Cortex, 2020, 30, 6405-6414.	2.9	15
57	Development and sex modulate visuospatial oscillatory dynamics in typically-developing children and adolescents. NeuroImage, 2020, 221, 117192.	4.2	16
58	Multi-Receptive-Field CNN for Semantic Segmentation of Medical Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3215-3225.	6.3	58
59	Exact and Robust Reconstructions of Integer Vectors Based on Multidimensional Chinese Remainder Theorem (MD-CRT). IEEE Transactions on Signal Processing, 2020, 68, 5349-5364.	5.3	7
60	Dynamic Resting-State Connectivity Differences in Eyes Open Versus Eyes Closed Conditions. Brain Connectivity, 2020, 10, 504-519.	1.7	22
61	Hippocampal and parahippocampal volumes vary by sex and traumatic life events in children. Journal of Psychiatry and Neuroscience, 2020, 45, 288-297.	2.4	7
62	Causality-Based Feature Fusion for Brain Neuro-Developmental Analysis. IEEE Transactions on Medical Imaging, 2020, 39, 3290-3299.	8.9	4
63	Log-sum enhanced sparse deep neural network. Neurocomputing, 2020, 407, 206-220.	5.9	6
64	Examining brain maturation during adolescence using graph Laplacian learning based Fourier transform. Journal of Neuroscience Methods, 2020, 338, 108649.	2.5	5
65	Pubertal Testosterone Tracks the Developmental Trajectory of Neural Oscillatory Activity Serving Visuospatial Processing. Cerebral Cortex, 2020, 30, 5960-5971.	2.9	18
66	Neural oscillatory dynamics serving abstract reasoning reveal robust sex differences in typically-developing children and adolescents. Developmental Cognitive Neuroscience, 2020, 42, 100770.	4.0	23
67	Resolution-based spectral clustering for brain parcellation using functional MRI. Journal of Neuroscience Methods, 2020, 335, 108628.	2.5	5
68	Canonical Correlation Analysis of Imaging Genetics Data Based on Statistical Independence and Structural Sparsity. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2621-2629.	6.3	2
69	A graph deep learning model for the classification of groups with different IQ using resting state fMRI. , 2020, , .		3
70	Aberrant Brain Connectivity in Schizophrenia Detected via a Fast Gaussian Graphical Model. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1479-1489.	6.3	10
71	A Parallelizable Framework for Segmenting Piecewise Signals. IEEE Access, 2019, 7, 13217-13229.	4.2	1
72	Refined measure of functional connectomes for improved identifiability and prediction. Human Brain Mapping, 2019, 40, 4843-4858.	3.6	13

#	Article	IF	CITATIONS
73	Robust kernel canonical correlation analysis to detect gene-gene co-associations: A case study in genetics. Journal of Bioinformatics and Computational Biology, 2019, 17, 1950028.	0.8	2
74	Detection of False-Positive Deletions from the Database of Genomic Variants. BioMed Research International, 2019, 2019, 1-8.	1.9	0
75	Deep Collaborative Learning With Application to the Study of Multimodal Brain Development. IEEE Transactions on Biomedical Engineering, 2019, 66, 3346-3359.	4.2	34
76	Resting state connectivity differences in eyes open versus eyes closed conditions. Human Brain Mapping, 2019, 40, 2488-2498.	3.6	133
77	A Joint Least Squares and Least Absolute Deviation Model. IEEE Signal Processing Letters, 2019, 26, 543-547.	3.6	2
78	Spatial source phase: A new feature for identifying spatial differences based on complexâ€valued restingâ€state fMRI data. Human Brain Mapping, 2019, 40, 2662-2676.	3.6	19
79	Two-Step Feature Selection for Identifying Developmental Differences in Resting fMRI Intrinsic Connectivity Networks. Applied Sciences (Switzerland), 2019, 9, 4298.	2.5	3
80	Brain Development Includes Linear and Multiple Nonlinear Trajectories: A Cross-Sectional Resting-State Functional Magnetic Resonance Imaging Study. Brain Connectivity, 2019, 9, 777-788.	1.7	19
81	The developmental trajectory of sensorimotor cortical oscillations. NeuroImage, 2019, 184, 455-461.	4.2	50
82	Capturing Dynamic Connectivity From Resting State fMRI Using Time-Varying Graphical Lasso. IEEE Transactions on Biomedical Engineering, 2019, 66, 1852-1862.	4.2	32
83	Neural dynamics of verbal working memory processing in children and adolescents. NeuroImage, 2019, 185, 191-197.	4.2	37
84	Alternating Diffusion Map Based Fusion of Multimodal Brain Connectivity Networks for IQ Prediction. IEEE Transactions on Biomedical Engineering, 2019, 66, 2140-2151.	4.2	25
85	Distance canonical correlation analysis with application to an imaging-genetic study. Journal of Medical Imaging, 2019, 6, 1.	1.5	8
86	Improved estimation of dynamic connectivity from resting-state fMRI data. , 2019, , .		0
87	Extraction of co-expressed discriminative features of Schizophrenia in imaging epigenetics framework. , 2019, , .		3
88	Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI. IEEE Transactions on Medical Imaging, 2018, 37, 1224-1234.	8.9	33
89	A Sparse Regression Method for Group-Wise Feature Selection with False Discovery Rate Control. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1066-1078.	3.0	5
90	Joint Detection of Associations Between DNA Methylation and Gene Expression From Multiple Cancers. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1960-1969.	6.3	5

#	Article	IF	CITATIONS
91	Fast and Accurate Detection of Complex Imaging Genetics Associations Based on Greedy Projected Distance Correlation. IEEE Transactions on Medical Imaging, 2018, 37, 860-870.	8.9	17
92	FDR-Corrected Sparse Canonical Correlation Analysis With Applications to Imaging Genomics. IEEE Transactions on Medical Imaging, 2018, 37, 1761-1774.	8.9	19
93	The lifespan trajectory of neural oscillatory activity in the motor system. Developmental Cognitive Neuroscience, 2018, 30, 159-168.	4.0	74
94	Cross-Tissue Exploration of Genetic and Epigenetic Effects on Brain Gray Matter in Schizophrenia. Schizophrenia Bulletin, 2018, 44, 443-452.	4.3	29
95	Enforcing Co-Expression Within a Brain-Imaging Genomics Regression Framework. IEEE Transactions on Medical Imaging, 2018, 37, 2561-2571.	8.9	24
96	Fused Estimation of Sparse Connectivity Patterns From Rest fMRI—Application to Comparison of Children and Adult Brains. IEEE Transactions on Medical Imaging, 2018, 37, 2165-2175.	8.9	24
97	Integrating Imaging Genomic Data in the Quest for Biomarkers of Schizophrenia Disease. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1480-1491.	3.0	13
98	Integrated computational biology analysis to evaluate target genes for chronic myelogenous leukemia. Molecular Medicine Reports, 2018, 18, 1766-1772.	2.4	4
99	A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia. Journal of Neuroscience Methods, 2018, 309, 161-174.	2.5	16
100	Influence function and robust variant of kernel canonical correlation analysis. Neurocomputing, 2018, 304, 12-29.	5.9	11
101	High dimensional latent Gaussian copula model for mixed data in imaging genetics. , 2018, , .		2
102	Knowledge database assisted gene marker selection for chronic lymphocytic leukemia. Journal of International Medical Research, 2018, 46, 3358-3364.	1.0	1
103	Changing brain connectivity dynamics: From early childhood to adulthood. Human Brain Mapping, 2018, 39, 1108-1117.	3.6	80
104	Multi-modal Brain Connectivity Study Using Deep Collaborative Learning. Lecture Notes in Computer Science, 2018, , 66-73.	1.3	3
105	A hybrid correlation analysis with application to imaging genetics. , 2018, , .		1
106	A patchâ€based tensor decomposition algorithm for Mâ€FISH image classification. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 622-632.	1.5	6
107	A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI. Journal of Neuroscience Methods, 2017, 276, 46-55.	2.5	10
108	Integration of multiple genomic imaging data for the study of schizophrenia using joint nonnegative matrix factorization. , 2017, , .		2

#	Article	IF	CITATIONS
109	Identifying Stages of Kidney Renal Cell Carcinoma by Combining Gene Expression and DNA Methylation Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1147-1153.	3.0	32
110	Adaptive sparse multiple canonical correlation analysis with application to imaging (epi)genomics study of schizophrenia. IEEE Transactions on Biomedical Engineering, 2017, 65, 1-1.	4.2	30
111	ENFORCING CO-EXPRESSION IN MULTIMODAL REGRESSION FRAMEWORK. , 2017, 22, 105-116.		2
112	Segmentation of multicolor fluorescence in situ hybridization images using an improved fuzzy C-means clustering algorithm by incorporating both spatial and spectral information. Journal of Medical Imaging, 2017, 4, 1.	1.5	1
113	Robust Kernel Canonical Correlation Analysis to Detect Gene-Gene Interaction for Imaging Genetics Data. , 2016, , .		3
114	Learning schizophrenia imaging genetics data via Multiple Kernel Canonical Correlation Analysis. , 2016, , .		4
115	Diagnosing schizophrenia by integrating genomic and imaging data through network fusion. , 2016, , .		0
116	Influence Function of Multiple Kernel Canonical Analysis to Identify Outliers in Imaging Genetics Data. , 2016, , .		4
117	The general critical analysis for continuous-time UPPAM recurrent neural networks. Neurocomputing, 2016, 175, 40-46.	5.9	1
118	Joint sparse canonical correlation analysis for detecting differential imaging genetics modules. Bioinformatics, 2016, 32, 3480-3488.	4.1	59
119	Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study. , 2016, 2016, 3310-3313.		12
120	An integrative imputation method based on multi-omics datasets. BMC Bioinformatics, 2016, 17, 247.	2.6	29
121	Ceneralized LASSO with under-determined regularization matrices. Signal Processing, 2016, 127, 239-246.	3.7	40
122	Unified tests for fine-scale mapping and identifying sparse high-dimensional sequence associations. Bioinformatics, 2016, 32, 330-337.	4.1	5
123	Imposing uniqueness to achieve sparsity. Signal Processing, 2016, 123, 1-8.	3.7	5
124	The effective diagnosis of schizophrenia by using multi-layer RBMs deep networks. , 2015, , .		2
125	Segmentation of Multicolor Fluorescence In-Situ Hybridization (M-FISH) image using an improved Fuzzy C-means clustering algorithm while incorporating both spatial and spectral information. , 2015, , .		4
126	Identification of a novel <i>FGFRL1</i> MicroRNA target site polymorphism for bone mineral density in meta-analyses of genome-wide association studies. Human Molecular Genetics, 2015, 24, 4710-4727.	2.9	22

#	Article	IF	CITATIONS
127	Integrative analysis of multiple diverse omics datasets by sparse group multitask regression. Frontiers in Cell and Developmental Biology, 2014, 2, 62.	3.7	23
128	Characterization of Human Chromosomal Material Exchange with Regard to the Chromosome Translocations Using Next-Generation Sequencing Data. Genome Biology and Evolution, 2014, 6, 3015-3024.	2.5	2
129	Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Human Molecular Genetics, 2014, 23, 1923-1933.	2.9	130
130	Sparse models for correlative and integrative analysis of imaging and genetic data. Journal of Neuroscience Methods, 2014, 237, 69-78.	2.5	45
131	Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs. NeuroImage, 2014, 102, 220-228.	4.2	44
132	Correspondence between fMRI and SNP data by group sparse canonical correlation analysis. Medical Image Analysis, 2014, 18, 891-902.	11.6	123
133	Identifying genetic connections with brain functions in schizophrenia using group sparse canonical correlation analysis. , 2013, , .		4
134	Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics, 2013, 14, 245.	2.6	91
135	Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method. BMC Medical Genomics, 2013, 6, S2.	1.5	24
136	Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNP data. , 2013, , .		2
137	Classification of multicolor fluorescence in-situ hybridization (M-FISH) image using structure based sparse representation model with different constrains. , 2013, , .		0
138	On LARS/Homotopy Equivalence Conditions for Over-Determined LASSO. IEEE Signal Processing Letters, 2012, 19, 894-897.	3.6	8
139	Bio marker identification for diagnosis of schizophrenia with integrated analysis of fMRI and SNPs. , 2012, , .		9
140	Classification of multicolor fluorescence in-situ hybridization (M-FISH) image using structure based sparse representation model. , 2012, , .		3
141	Subtyping of Gliomaby Combining Gene Expression and CNVs Data Based on a Compressive Sensing Approach. Advancements in Genetic Engineering, 2012, 01, 101.	0.1	4
142	Segmentation of M-FISH Images for Improved Classification of Chromosomes With an Adaptive Fuzzy C-means Clustering Algorithm. IEEE Transactions on Fuzzy Systems, 2012, 20, 1-8.	9.8	130
143	Subtyping of Leukemia with Gene Expression Analysis Using Compressive Sensing Method. , 2011, , .		1
144	Classification of Schizophrenia Patients with Combined Analysis of SNP and fMRI Data Based on Sparse Representation. , 2011, , .		3

9

1

#	Article	IF	CITATIONS
145	Integrated Analysis of Gene Expression and Copy Number Data on Gene Shaving Using Independent Component Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1568-1579.	3.0	16

146 Integrated Analysis of Gene Expression and Gene Copy Number for Gene Shaving Based on ICA Approach., 2011,,.