Andreas S Reichert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2079068/publications.pdf

Version: 2024-02-01

102 papers 17,479 citations

52 h-index 99 g-index

111 all docs

111 docs citations

times ranked

111

28565 citing authors

#	Article	IF	Citations
1	Impaired Hepatic Mitochondrial Capacity in Nonalcoholic Steatohepatitis Associated With Type 2 Diabetes. Diabetes Care, 2022, 45, 928-937.	8.6	18
2	Mesenchymal stem cells improve redox homeostasis and mitochondrial respiration in fibroblast cell lines with pathogenic MT-ND3 and MT-ND6 variants. Stem Cell Research and Therapy, 2022, 13, .	5 . 5	О
3	Passive needle guide tracking with radial acquisition and phaseâ€only crossâ€correlation. Magnetic Resonance in Medicine, 2021, 85, 1039-1046.	3.0	1
4	Protease OMA1 modulates mitochondrial bioenergetics and ultrastructure through dynamic association with MICOS complex. IScience, 2021, 24, 102119.	4.1	22
5	Autophagy promotes mitochondrial respiration by providing serine for one-carbon-metabolism. Autophagy, 2021, 17, 4480-4483.	9.1	3
6	Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. International Journal of Molecular Sciences, 2021, 22, 4363.	4.1	23
7	High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol. Cell Death and Disease, 2021, 12, 560.	6. 3	8
8	The relevance of mitochondrial morphology for human disease. International Journal of Biochemistry and Cell Biology, 2021, 134, 105951.	2.8	21
9	Emerging Roles of the MICOS Complex in Cristae Dynamics and Biogenesis. Biology, 2021, 10, 600.	2.8	29
10	Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia– a novel perspective on hepatic encephalopathy. Biological Chemistry, 2021, 402, 1103-1113.	2.5	5
11	Linking transport and translation of mRNAs with endosomes and mitochondria. EMBO Reports, 2021, 22, e52445.	4.5	29
12	Impact of Amyloid-β on Platelet Mitochondrial Function and Platelet–Mediated Amyloid Aggregation in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9633.	4.1	14
13	Conserved GxxxG and WN motifs of MIC13 are essential for bridging two MICOS subcomplexes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183683.	2.6	8
14	Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. Science Advances, 2021, 7, eabi9551.	10.3	24
15	Magnetic Resonance Imaging of Venous Stents at 1.5 T. Investigative Radiology, 2020, 55, 741-746.	6.2	2
16	Cristae Membrane Dynamics – A Paradigm Change. Trends in Cell Biology, 2020, 30, 923-936.	7.9	82
17	Endogenous Carbon Monoxide Signaling Modulates Mitochondrial Function and Intracellular Glucose Utilization: Impact of the Heme Oxygenase Substrate Hemin. Antioxidants, 2020, 9, 652.	5.1	18
18	Subcellular Localization and Mitotic Interactome Analyses Identify SIRT4 as a Centrosomally Localized and Microtubule Associated Protein. Cells, 2020, 9, 1950.	4.1	19

#	Article	IF	CITATIONS
19	Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	24
20	Cristae undergo continuous cycles of membrane remodelling in a <scp>MICOS</scp> â€dependent manner. EMBO Reports, 2020, 21, e49776.	4.5	106
21	CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. PLoS ONE, 2020, 15, e0227926.	2.5	20
22	Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118711.	4.1	6
23	Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria. Plant Physiology, 2020, 182, 692-706.	4.8	30
24	MIC26 and MIC27 cooperate to regulate cardiolipin levels and the landscape of OXPHOS complexes. Life Science Alliance, 2020, 3, e202000711.	2.8	34
25	Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes. EBioMedicine, 2019, 48, 539-553.	6.1	24
26	Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO Journal, 2019, 38, e101056.	7.8	204
27	Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity. International Journal of Molecular Sciences, 2019, 20, 4311.	4.1	68
28	In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS ONE, 2019, 14, e0222267.	2.5	19
29	Carbon monoxide releasing molecule 401 (CORM-401) modulates phase I metabolism of xenobiotics. Toxicology in Vitro, 2019, 59, 215-220.	2.4	5
30	Selectively Addressing Mitochondrial Glutathione and Thioredoxin Redox Systems. Cell Chemical Biology, 2019, 26, 316-318.	5.2	7
31	GantryMate: A Modular MR-Compatible Assistance System for MR-Guided Needle Interventions. Tomography, 2019, 5, 266-273.	1.8	6
32	The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane. Cell Death and Disease, 2018, 9, 286.	6.3	27
33	Simultaneous slice excitation for accelerated passive marker tracking via phase-only cross correlation (POCC) in MR-guided needle interventions. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 781-788.	2.0	4
34	Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective. Antioxidants, 2018, 7, 31.	5.1	75
35	The BH3 mimetic compound BH3I-1 impairs mitochondrial dynamics and promotes stress response in addition to its pro-apoptotic key function. Toxicology Letters, 2018, 295, 369-378.	0.8	6
36	How to get rid of mitochondria: crosstalk and regulation of multiple mitophagy pathways. Biological Chemistry, 2017, 399, 29-45.	2.5	77

#	Article	IF	Citations
37	Modulation of oxidative phosphorylation and redox homeostasis in mitochondrial NDUFS4 deficiency via mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 150.	5.5	26
38	Cristae architecture is determined by an interplay of the MICOS complex and the F1Fo ATP synthase via Mic27 and Mic10. Microbial Cell, 2017, 4, 259-272.	3.2	71
39	SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging, 2017, 9, 2163-2189.	3.1	108
40	Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma are highly dependent on oxidative phosphorylation. International Journal of Cancer, 2016, 138, 2231-2246.	5.1	37
41	Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biological Chemistry, 2016, 397, 637-647.	2.5	21
42	OPA1 functionally interacts with MIC60 but is dispensable for crista junction formation. FEBS Letters, 2016, 590, 3309-3322.	2.8	74
43	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
44	Mitophagy and deubiquitination in yeast $\hat{a}\in$ " the power of synthetic quantitative array technology. Molecular and Cellular Oncology, 2016, 3, e1038422.	0.7	2
45	Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells. PLoS ONE, 2016, 11, e0160258.	2.5	66
46	Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Scientific Reports, 2015, 5, 7885.	3.3	93
47	Synthetic Quantitative Array Technology Identifies the Ubp3-Bre5 Deubiquitinase Complex as a Negative Regulator of Mitophagy. Cell Reports, 2015, 10, 1215-1225.	6.4	57
48	The non-glycosylated isoform of MIC26 is a constituent of the mammalian MICOS complex and promotes formation of crista junctions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1551-1563.	4.1	67
49	Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2766-2774.	4.1	33
50	Data supporting the role of the non-glycosylated isoform of MIC26 in determining cristae morphology. Data in Brief, 2015, 4, 135-139.	1.0	3
51	Highlight issue: membranes in motion. Biological Chemistry, 2014, 395, 251-251.	2.5	0
52	Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43. Journal of Biological Chemistry, 2014, 289, 10769-10784.	3.4	100
53	Novel intracellular functions of apolipoproteins: the ApoO protein family as constituents of the Mitofilin/MINOS complex determines cristae morphology in mitochondria. Biological Chemistry, 2014, 395, 285-296.	2.5	33
54	Uniform nomenclature for the mitochondrial contact site and cristae organizing system. Journal of Cell Biology, 2014, 204, 1083-1086.	5.2	219

#	Article	IF	CITATIONS
55	Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Human Molecular Genetics, 2013, 22, 4871-4887.	2.9	151
56	Pcp1 Protein (Yeast)., 2013,, 3567-3572.		0
57	Quality control of mitochondria during aging: Is there a good and a bad side of mitochondrial dynamics?. BioEssays, 2013, 35, 314-322.	2.5	24
58	<i>TigarB</i> causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Annals of Neurology, 2013, 74, 837-847.	5.3	68
59	APOOL Is a Cardiolipin-Binding Constituent of the Mitofilin/MINOS Protein Complex Determining Cristae Morphology in Mammalian Mitochondria. PLoS ONE, 2013, 8, e63683.	2.5	130
60	Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics. PLoS Computational Biology, 2012, 8, e1002745.	3.2	68
61	Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging. PLoS Computational Biology, 2012, 8, e1002576.	3.2	81
62	The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Molecular Biology of the Cell, 2012, 23, 2143-2155.	2.1	98
63	Complexome Profiling Identifies TMEM126B as a Component of the Mitochondrial Complex I Assembly Complex. Cell Metabolism, 2012, 16, 538-549.	16.2	252
64	SNCA (\hat{l}_{\pm} -synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, 2012, 8, 1494-1509.	9.1	113
65	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
66	Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation. Antioxidants and Redox Signaling, 2012, 16, 1421-1433.	5.4	273
67	Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2297-2310.	4.1	373
68	From Mitochondrial Dysfunction to Amyloid Beta Formation: Novel Insights into the Pathogenesis of Alzheimer's Disease. Molecular Neurobiology, 2012, 46, 186-193.	4.0	125
69	A New Link to Mitochondrial Impairment in Tauopathies. Molecular Neurobiology, 2012, 46, 205-216.	4.0	109
70	TIM23-mediated insertion of transmembrane \hat{l}_{\pm} -helices into the mitochondrial inner membrane. EMBO Journal, 2011, 30, 1003-1011.	7.8	42
71	Mitophagy, mitochondrial dynamics and the general stress response in yeast. Biochemical Society Transactions, 2011, 39, 1514-1519.	3.4	44
72	Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene <i>WHI2</i> . Journal of Cell Science, 2011, 124, 1339-1350.	2.0	147

#	Article	IF	Citations
73	How to split up: lessons from mitochondria. EMBO Journal, 2011, 30, 2751-2753.	7.8	15
74	Impaired quality control of mitochondria: Aging from a new perspective. Experimental Gerontology, 2010, 45, 503-511.	2.8	98
75	Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Reports, 2010, 11, 45-51.	4.5	1,045
76	Intramembrane Proteolysis of Mgm1 by the Mitochondrial Rhomboid Protease Is Highly Promiscuous Regarding the Sequence of the Cleaved Hydrophobic Segment. Journal of Molecular Biology, 2010, 401, 182-193.	4.2	32
77	Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration. PLoS ONE, 2009, 4, e5777.	2.5	305
78	Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su <i>e</i> / <i>g</i> . Journal of Cell Biology, 2009, 185, 1047-1063.	5.2	271
79	Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation. Journal of Biological Chemistry, 2009, 284, 22938-22951.	3.4	355
80	Mrpl36 Is Important for Generation of Assembly Competent Proteins during Mitochondrial Translation. Molecular Biology of the Cell, 2009, 20, 2615-2625.	2.1	40
81	Emerging roles of mitochondrial membrane dynamics in health and disease. Biological Chemistry, 2009, 390, 707-15.	2.5	27
82	Cristae formationâ€"linking ultrastructure and function of mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 5-19.	4.1	357
83	Distinct roles of the two isoforms of the dynaminâ€like GTPase Mgm1 in mitochondrial fusion. FEBS Letters, 2009, 583, 2237-2243.	2.8	85
84	Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9186-9191.	7.1	135
85	Mitochondrial Targeting Adaptation of the Hominoid-Specific Glutamate Dehydrogenase Driven by Positive Darwinian Selection. PLoS Genetics, 2008, 4, e1000150.	3.5	54
86	OPA1 Processing Reconstituted in Yeast Depends on the Subunit Composition of the m-AAA Protease in Mitochondria. Molecular Biology of the Cell, 2007, 18, 3582-3590.	2.1	162
87	Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin. Journal of Neuroscience, 2007, 27, 12413-12418.	3.6	466
88	Amyloid precursor protein intracellular domain modulates cellular calcium homeostasis and ATP content. Journal of Neurochemistry, 2007, 102, 1264-1275.	3.9	56
89	19 Analysis of Gene Function of Mitochondria. Methods in Microbiology, 2007, 36, 445-489.	0.8	0
90	Differential Analysis of Saccharomyces cerevisiae Mitochondria by Free Flow Electrophoresis. Molecular and Cellular Proteomics, 2006, 5, 2185-2200.	3.8	56

#	Article	IF	CITATIONS
91	Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology. Journal of Biological Chemistry, 2006, 281, 37972-37979.	3.4	382
92	Dynamic subcompartmentalization of the mitochondrial inner membrane. Journal of Cell Biology, 2006, 175, 237-247.	5.2	346
93	Mitochondrial Membrane Potential Is Dependent on the Oligomeric State of F1F0-ATP Synthase Supracomplexes*. Journal of Biological Chemistry, 2006, 281, 13990-13998.	3.4	131
94	Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. Journal of Cell Biology, 2004, 165, 167-173.	5.2	203
95	Mitochondriomics or what makes us breathe. Trends in Genetics, 2004, 20, 555-562.	6.7	145
96	Crystal Structure of the Human CCA-adding Enzyme: Insights into Template-independent Polymerization. Journal of Molecular Biology, 2003, 328, 985-994.	4.2	71
97	Processing of Mgm1 by the Rhomboid-type Protease Pcp1 Is Required for Maintenance of Mitochondrial Morphology and of Mitochondrial DNA. Journal of Biological Chemistry, 2003, 278, 27781-27788.	3.4	327
98	Contact sites between the outer and inner membrane of mitochondriaâ€"role in protein transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 41-49.	4.1	101
99	Purification and Characterization of Human Cell-Cell Adhesion Molecule 1 (C-CAM1) Expressed in Insect Cells. Protein Expression and Purification, 2001, 21, 343-351.	1.3	6
100	Repair of tRNAs in metazoan mitochondria. Nucleic Acids Research, 2000, 28, 2043-2048.	14.5	34
101	Genetic and structural characterization of the human mitochondrial inner membrane translocase 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 289, 69-82.	4.2	105
102	Processing and Editing of Overlapping tRNAs in Human Mitochondria. Journal of Biological Chemistry, 1998, 273, 31977-31984.	3.4	46