Klaus Ley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2078615/publications.pdf

Version: 2024-02-01

4885 8755 30,627 232 75 168 citations h-index g-index papers 244 244 244 35081 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 2007, 7, 678-689.	22.7	3,547
2	Development of Monocytes, Macrophages, and Dendritic Cells. Science, 2010, 327, 656-661.	12.6	2,471
3	Immune and Inflammatory Mechanisms of Atherosclerosis. Annual Review of Immunology, 2009, 27, 165-197.	21.8	1,249
4	Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively Activated Macrophages. Frontiers in Immunology, 2019, 10, 1084.	4.8	1,202
5	Immunity and Inflammation in Atherosclerosis. Circulation Research, 2019, 124, 315-327.	4.5	972
6	Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Medicine, 2003, 9, 61-67.	30.7	931
7	Phagocytosis of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17. Immunity, 2005, 22, 285-294.	14.3	803
8	Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circulation Research, 2018, 122, 1661-1674.	4.5	577
9	RANTES Deposition by Platelets Triggers Monocyte Arrest on Inflamed and Atherosclerotic Endothelium. Circulation, 2001, 103, 1772-1777.	1.6	536
10	Interleukin-17 Signaling in Inflammatory, Kupffer Cells, and Hepatic Stellate Cells Exacerbates Liver Fibrosis in Mice. Gastroenterology, 2012, 143, 765-776.e3.	1.3	536
11	Critical role for \hat{l}^2 7 integrins in formation of the gut-associated lymphoid tissue. Nature, 1996, 382, 366-370.	27.8	535
12	Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses. Cell, 2012, 151, 138-152.	28.9	487
13	Monocyte and Macrophage Dynamics During Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1506-1516.	2.4	459
14	Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Reviews Immunology, 2004, 4, 325-336.	22.7	413
15	Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. Journal of Experimental Medicine, 2006, 203, 1273-1282.	8.5	405
16	Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood, 2011, 118, 6743-6751.	1.4	390
17	NR4A1 (Nur77) Deletion Polarizes Macrophages Toward an Inflammatory Phenotype and Increases Atherosclerosis. Circulation Research, 2012, 110, 416-427.	4.5	380
18	T cell subsets and functions in atherosclerosis. Nature Reviews Cardiology, 2020, 17, 387-401.	13.7	379

#	Article	IF	Citations
19	Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circulation Research, 2018, 122, 1675-1688.	4.5	377
20	Monocyte trafficking across the vessel wall. Cardiovascular Research, 2015, 107, 321-330.	3.8	370
21	Blockade of Interleukin-17A Results in Reduced Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation, 2010, 121, 1746-1755.	1.6	368
22	Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature, 2018, 558, 301-306.	27.8	359
23	Neutrophils: New insights and open questions. Science Immunology, 2018, 3, .	11.9	348
24	Deposition of Platelet RANTES Triggering Monocyte Recruitment Requires P-Selectin and Is Involved in Neointima Formation After Arterial Injury. Circulation, 2002, 106, 1523-1529.	1.6	332
25	Threshold Levels of Fluid Shear Promote Leukocyte Adhesion through Selectins (CD62L,P,E). Journal of Cell Biology, 1997, 136, 717-727.	5.2	324
26	Integrin-based therapeutics: biological basis, clinical use and new drugs. Nature Reviews Drug Discovery, 2016, 15, 173-183.	46.4	324
27	Atherosclerosis. Circulation Research, 2018, 123, 1118-1120.	4.5	320
28	M1 and M2 Macrophages: The Chicken and the Egg of Immunity. Journal of Innate Immunity, 2014, 6, 716-726.	3.8	310
29	Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics, 2003, 19, 1945-1951.	4.1	290
30	Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. Journal of Clinical Investigation, 2006, 116, 695-702.	8.2	288
31	Spleen Tyrosine Kinase Syk Is Necessary for E-Selectin-Induced $\hat{I}\pm\hat{L}^2$ 2 Integrin-Mediated Rolling on Intercellular Adhesion Molecule-1. Immunity, 2007, 26, 773-783.	14.3	265
32	Glycosylation in immune cell trafficking. Immunological Reviews, 2009, 230, 97-113.	6.0	260
33	CXC Chemokine Ligand 4 Induces a Unique Transcriptome in Monocyte-Derived Macrophages. Journal of Immunology, 2010, 184, 4810-4818.	0.8	256
34	Homeostatic Regulation of Blood Neutrophil Counts. Journal of Immunology, 2008, 181, 5183-5188.	0.8	244
35	The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. Journal of Clinical Investigation, 2001, 108, 1307-1314.	8.2	239
36	M1 Means Kill; M2 Means Heal. Journal of Immunology, 2017, 199, 2191-2193.	0.8	214

#	Article	IF	CITATIONS
37	Role of Vascular Cell Adhesion Molecule-1 and Fibronectin Connecting Segment-1 in Monocyte Rolling and Adhesion on Early Atherosclerotic Lesions. Circulation Research, 2000, 87, 153-159.	4.5	213
38	Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 2020, 127, 402-426.	4.5	207
39	Dynamic T cell–APC interactions sustain chronic inflammation in atherosclerosis. Journal of Clinical Investigation, 2012, 122, 3114-3126.	8.2	205
40	Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood, 2012, 119, 4275-4282.	1.4	204
41	L-Selectin Shedding Regulates Leukocyte Recruitment. Journal of Experimental Medicine, 2001, 193, 863-872.	8.5	203
42	Vav GEFs are required for \hat{l}^2 2 integrin-dependent functions of neutrophils. Journal of Cell Biology, 2004, 166, 273-282.	5.2	201
43	Near-Wall $\hat{1}\frac{1}{4}$ -PIV Reveals a Hydrodynamically Relevant Endothelial Surface Layer in Venules In Vivo. Biophysical Journal, 2003, 85, 637-645.	0.5	198
44	Mechanisms and Consequences of Neutrophil Interaction with the Endothelium. American Journal of Pathology, 2008, 172, 1-7.	3.8	195
45	How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nature Reviews Immunology, 2022, 22, 251-265.	22.7	176
46	Neutrophil Adhesion and Activation under Flow. Microcirculation, 2009, 16, 31-42.	1.8	167
47	Importance of E-Selectin for Firm Leukocyte Adhesion In Vivo. Circulation Research, 1998, 83, 287-294.	4.5	161
48	Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. Journal of Clinical Investigation, 2005, 115, 3473-3483.	8.2	160
49	Platelet, but not endothelial, Pâ€selectin is critical for neutrophilâ€mediated acute postischemic renal failure. FASEB Journal, 2001, 15, 2337-2344.	0.5	155
50	â€~Slings' enable neutrophil rolling at high shear. Nature, 2012, 488, 399-403.	27.8	153
51	Leukocyte Arrest During Cytokine-Dependent Inflammation In Vivo. Journal of Immunology, 2000, 164, 3301-3308.	0.8	152
52	Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood, 2010, 116, 617-624.	1.4	143
53	Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and Pl3Kl̂³ pathways. Blood, 2010, 115, 3118-3127.	1.4	141
54	Regulatory CD4 ⁺ T Cells Recognize Major Histocompatibility Complex Class II Molecule〓Restricted Peptide Epitopes of Apolipoprotein B. Circulation, 2018, 138, 1130-1143.	1.6	140

#	Article	IF	CITATIONS
55	Relevance of L-selectin Shedding for Leukocyte Rolling In Vivo. Journal of Experimental Medicine, 1999, 189, 939-948.	8.5	138
56	Neutrophil-Regulatory Tn Lymphocytes. Immunologic Research, 2006, 34, 229-242.	2.9	134
57	CXCR2- and E-Selectin–induced Neutrophil Arrest during Inflammation In Vivo. Journal of Experimental Medicine, 2004, 200, 935-939.	8.5	129
58	T cells in atherosclerosis. International Immunology, 2013, 25, 615-622.	4.0	128
59	Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biology, 2017, 15, 45.	3.8	124
60	CXCR6 Promotes Atherosclerosis by Supporting T-Cell Homing, Interferon- \hat{l}^3 Production, and Macrophage Accumulation in the Aortic Wall. Circulation, 2007, 116, 1801-1811.	1.6	114
61	Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nature Communications, 2017, 8, 16041.	12.8	113
62	Neutrophil arrest by LFA-1 activation. Frontiers in Immunology, 2012, 3, 157.	4.8	107
63	Role of the endothelial surface layer in neutrophil recruitment. Journal of Leukocyte Biology, 2015, 98, 503-515.	3.3	104
64	CCR5 ⁺ T-bet ⁺ FoxP3 ⁺ Effector CD4 T Cells Drive Atherosclerosis. Circulation Research, 2016, 118, 1540-1552.	4.5	104
65	B-Cell Aortic Homing and Atheroprotection Depend on Id3. Circulation Research, 2012, 110, e1-12.	4.5	102
66	Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation, 2019, 139, 918-931.	1.6	100
67	Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B ₁₀₀ –Reactive CD4 ⁺ T-Regulatory Cells. Circulation, 2020, 142, 1279-1293.	1.6	100
68	Biomechanics of leukocyte rolling. Biorheology, 2011, 48, 1-35.	0.4	99
69	How Mouse Macrophages Sense What Is Going On. Frontiers in Immunology, 2016, 7, 204.	4.8	99
70	Role of Primary and Secondary Capture for Leukocyte Accumulation In Vivo. Circulation Research, 1998, 82, 30-38.	4.5	87
71	Gαi2 is required for chemokine-induced neutrophil arrest. Blood, 2007, 110, 3773-3779.	1.4	86
72	Cross-linking of CD18 in human neutrophils induces an increase of intracellular free Ca2+, exocytosis of azurophilic granules, quantitative up-regulation of CD18, shedding of L-selectin, and actin polymerization. Journal of Leukocyte Biology, 1994, 56, 625-635.	3.3	85

#	Article	IF	Citations
73	Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns. Trends in Immunology, 2019, 40, 613-634.	6.8	85
74	Neutrophil recruitment limited by high-affinity bent \hat{l}^22 integrin binding ligand in cis. Nature Communications, 2016, 7, 12658.	12.8	84
7 5	Single Cell RNA Sequencing in Atherosclerosis Research. Circulation Research, 2020, 126, 1112-1126.	4.5	84
76	Endothelial Protective Monocyte Patrolling in Large Arteries Intensified by Western Diet and Atherosclerosis. Circulation Research, 2017, 120, 1789-1799.	4. 5	82
77	Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science, 2022, 375, 214-221.	12.6	81
78	The PSGL-1–L-selectin signaling complex regulates neutrophil adhesion under flow. Journal of Experimental Medicine, 2013, 210, 2171-2180.	8.5	80
79	Rap1a activation by CalDAGâ€GEFI and p38 MAPK is involved in Eâ€selectinâ€dependent slow leukocyte rolling. European Journal of Immunology, 2011, 41, 2074-2085.	2.9	79
80	How dendritic cells shape atherosclerosis. Trends in Immunology, 2011, 32, 540-547.	6.8	78
81	Atheroprotective Vaccination with MHC-II Restricted Peptides from ApoB-100. Frontiers in Immunology, 2013, 4, 493.	4.8	78
82	Leukocyte phosphoinositide-3 kinase \hat{l}^3 is required for chemokine-induced, sustained adhesion under flow in vivo. Journal of Leukocyte Biology, 2006, 80, 1491-1499.	3.3	75
83	PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 2009, 86, 1119-1124.	3.3	75
84	Lymphocyte Migration Into Atherosclerotic Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 40-49.	2.4	72
85	A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense. Nature Communications, 2018, 9, 525.	12.8	72
86	Induction of LFA-1-Dependent Neutrophil Rolling on ICAM-1 by Engagement of E-Selectin. Microcirculation, 2006, 13, 99-109.	1.8	70
87	Quantitative dynamic footprinting microscopy reveals mechanisms of neutrophil rolling. Nature Methods, 2010, 7, 821-824.	19.0	69
88	Circulating T cell-monocyte complexes are markers of immune perturbations. ELife, 2019, 8, .	6.0	67
89	Neutrophil rolling at high shear: Flattening, catch bond behavior, tethers and slings. Molecular Immunology, 2013, 55, 59-69.	2.2	65
90	Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2043-2052.	2.4	65

#	Article	IF	Citations
91	Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 2017, 4, 80.	2.4	64
92	The second touch hypothesis: T cell activation, homing and polarization. F1000Research, 2014, 3, 37.	1.6	61
93	Macrophages at the Fork in the Road to Health or Disease. Frontiers in Immunology, 2015, 6, 59.	4.8	59
94	A Single-Step Chemoenzymatic Reaction for the Construction of Antibody–Cell Conjugates. ACS Central Science, 2018, 4, 1633-1641.	11.3	59
95	Beyond vascular inflammation—recent advances in understanding atherosclerosis. Cellular and Molecular Life Sciences, 2015, 72, 3853-3869.	5.4	58
96	Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules. Nature Communications, 2016, 7, 10828.	12.8	58
97	Flow Cytometry Analysis of Immune Cells Within Murine Aortas. Journal of Visualized Experiments, 2011, , .	0.3	56
98	Vaccination to modulate atherosclerosis. Autoimmunity, 2015, 48, 152-160.	2.6	56
99	Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. Journal of Experimental Medicine, 2021, 218, .	8.5	51
100	Migratory and Dancing Macrophage Subsets in Atherosclerotic Lesions. Circulation Research, 2019, 125, 1038-1051.	4.5	47
101	High-Affinity Bent \hat{I}^2 2-Integrin Molecules in Arresting Neutrophils Face Each Other through Binding to ICAMs In cis. Cell Reports, 2019, 26, 119-130.e5.	6.4	46
102	Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem. Journal of Cell Biology, 2019, 218, 1799-1809.	5.2	45
103	Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. Journal of Experimental Medicine, 2016, 213, 1117-1131.	8.5	44
104	Atherosclerosis in the single-cell era. Current Opinion in Lipidology, 2018, 29, 389-396.	2.7	44
105	Deconvolution of pro- and antiviral genomic responses in Zika virus-infected and bystander macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9172-E9181.	7.1	44
106	Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H781-H790.	3.2	42
107	Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circulation Research, 2019, 124, e6-e19.	4.5	41
108	Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries. Journal of Biomedical Optics, 2015, 20, 1.	2.6	40

#	Article	IF	CITATIONS
109	Leukocyte arrest: Biomechanics and molecular mechanisms of \hat{l}^2 2 integrin activation. Biorheology, 2016, 52, 353-377.	0.4	40
110	Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovascular Research, 2021, 117, 2537-2543.	3.8	39
111	ATVB Distinguished Scientist Award. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 764-777.	2.4	38
112	Altered Gut Microbiota and Host Metabolite Profiles in Women With Human Immunodeficiency Virus. Clinical Infectious Diseases, 2020, 71, 2345-2353.	5.8	38
113	Regulatory T Cell Stability and Plasticity in Atherosclerosis. Cells, 2020, 9, 2665.	4.1	38
114	Increased Cholesterol Content in Gammadelta ($\hat{l}^3\hat{l}$) T Lymphocytes Differentially Regulates Their Activation. PLoS ONE, 2013, 8, e63746.	2.5	35
115	Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation. Cell Reports, 2017, 21, 3885-3899.	6.4	34
116	Gnb isoforms control a signaling pathway comprising Rac1, PlcÎ ² 2, and PlcÎ ² 3 leading to LFA-1 activation and neutrophil arrest in vivo. Blood, 2016, 127, 314-324.	1.4	33
117	Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse. Journal of Magnetic Resonance Imaging, 2000, 12, 790-794.	3.4	32
118	The Transmembrane Domains of L-selectin and CD44 Regulate Receptor Cell Surface Positioning and Leukocyte Adhesion under Flow. Journal of Biological Chemistry, 2010, 285, 13490-13497.	3.4	32
119	CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nature Communications, 2021, 12, 3872.	12.8	32
120	The second touch hypothesis: T cell activation, homing and polarization. F1000Research, 2014, 3, 37.	1.6	32
121	Sequential Immune Responses: The Weapons of Immunity. Journal of Innate Immunity, 2015, 7, 443-449.	3.8	31
122	Vaccination against atherosclerosis. Current Opinion in Immunology, 2019, 59, 15-24.	5.5	31
123	Kindlin-3 recruitment to the plasma membrane precedes high-affinity \hat{l}^2 2-integrin and neutrophil arrest from rolling. Blood, 2021, 137, 29-38.	1.4	30
124	P-selectin glycoprotein ligand-1 in T cells. Current Opinion in Hematology, 2017, 24, 265-273.	2.5	29
125	Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. Journal of Experimental Medicine, 2021, 218, .	8.5	29
126	Protein Kinase C- \hat{l}_i Is Required for Murine Neutrophil Recruitment and Adhesion Strengthening under Flow. Journal of Immunology, 2012, 188, 4043-4051.	0.8	28

#	Article	IF	Citations
127	Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2. Trends in Microbiology, 2020, 28, 605-618.	7.7	28
128	Microfluidics-based side view flow chamber reveals tether-to-sling transition in rolling neutrophils. Scientific Reports, 2016, 6, 28870.	3.3	25
129	Biocompatibility studies of macroscopic fibers made from carbon nanotubes: Implications for carbon nanotube macrostructures in biomedical applications. Carbon, 2021, 173, 462-476.	10.3	25
130	Dynamics of Microvillus Extension and Tether Formation in Rolling Leukocytes. Cellular and Molecular Bioengineering, 2009, 2, 207-217.	2.1	24
131	Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nature Communications, 2020, 11, 3984.	12.8	24
132	Gαi2 and Gαi3 Differentially Regulate Arrest from Flow and Chemotaxis in Mouse Neutrophils. Journal of Immunology, 2016, 196, 3828-3833.	0.8	23
133	2015 Russell Ross Memorial Lecture in Vascular Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 429-438.	2.4	22
134	IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Scientific Reports, 2017, 7, 2255.	3.3	22
135	Transmission of integrin \hat{l}^2 7 transmembrane domain topology enables gut lymphoid tissue development. Journal of Cell Biology, 2018, 217, 1453-1465.	5.2	22
136	CX3CL1-Fc treatment prevents atherosclerosis in Ldlr KO mice. Molecular Metabolism, 2019, 20, 89-101.	6.5	21
137	Role of the adaptive immune system in atherosclerosis. Biochemical Society Transactions, 2020, 48, 2273-2281.	3.4	21
138	Molecular mechanisms of leukocyte Î ² 2 integrin activation. Blood, 2022, 139, 3480-3492.	1.4	21
139	Eventâ€Tracking Model of Adhesion Identifies Loadâ€Bearing Bonds in Rolling Leukocytes. Microcirculation, 2009, 16, 115-130.	1.8	20
140	Rolling neutrophils form tethers and slings under physiologic conditions in vivo. Journal of Leukocyte Biology, 2018, 103, 67-70.	3.3	20
141	Leukocyte Adhesion Deficiency IV. Monocyte Integrin Activation Deficiency in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1075-1077.	5.6	19
142	Inflammatory Pathways Regulated by Tumor Necrosis Receptor–Associated Factor 1 Protect From Metabolic Consequences in Diet-Induced Obesity. Circulation Research, 2018, 122, 693-700.	4.5	19
143	A clinically applicable adjuvant for an atherosclerosis vaccine in mice. European Journal of Immunology, 2018, 48, 1580-1587.	2.9	19
144	A CD22–Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nature Immunology, 2021, 22, 381-390.	14.5	19

#	Article	IF	CITATIONS
145	Cell Protrusions and Tethers: A Unified Approach. Biophysical Journal, 2011, 100, 1697-1707.	0.5	17
146	SAMP1/YitFc Mice Develop Ileitis via Loss of CCL21 and Defects in Dendritic Cell Migration. Gastroenterology, 2015, 148, 783-793.e5.	1.3	17
147	Micro-PTV Measurement of the Fluid Shear Stress Acting on Adherent Leukocytes In Vivo. Biophysical Journal, 2009, 96, 4249-4259.	0.5	16
148	The trafficking protein JFC1 regulates Rac1-GTP localization at the uropod controlling neutrophil chemotaxis and in vivo migration. Journal of Leukocyte Biology, 2019, 105, 1209-1224.	3.3	16
149	Macrophage Polarization: Decisions That Affect Health. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	16
150	Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. , 2022, 1, 462-475.		16
151	Frontline Science: A flexible kink in the transmembrane domain impairs \hat{l}^22 integrin extension and cell arrest from rolling. Journal of Leukocyte Biology, 2020, 107, 175-183.	3.3	15
152	Frontline Science: Kindlin-3 is essential for patrolling and phagocytosis functions of nonclassical monocytes during metastatic cancer surveillance. Journal of Leukocyte Biology, 2020, 107, 883-892.	3.3	15
153	Chapter 11 Intravital Microscopic Investigation of Leukocyte Interactions with the Blood Vessel Wall. Methods in Enzymology, 2008, 445, 255-279.	1.0	14
154	Live Cell Imaging of Paxillin in Rolling Neutrophils by Dual-Color Quantitative Dynamic Footprinting. Microcirculation, 2011, 18, 361-372.	1.8	14
155	Natural Killer Cells at Ease. Circulation Research, 2018, 122, 6-7.	4.5	14
156	Opportunities for an atherosclerosis vaccine: From mice to humans. Vaccine, 2020, 38, 4495-4506.	3.8	14
157	Sulfated Sugars for Rolling Lymphocytes. Journal of Experimental Medicine, 2003, 198, 1285-1288.	8.5	12
158	Dances with leukocytes: how tetraspanin-enriched microdomains assemble to form endothelial adhesive platforms. Journal of Cell Biology, 2008, 183, 375-376.	5.2	12
159	Imaging of the immune system – towards a subcellular and molecular understanding. Journal of Cell Science, 2020, 133, .	2.0	12
160	Loss of CXCR4 on non-classical monocytes in participants of the Women's Interagency HIV Study (WIHS) with subclinical atherosclerosis. Cardiovascular Research, 2019, 115, 1029-1040.	3.8	11
161	Inflammation and Atherosclerosis. Cells, 2021, 10, 1197.	4.1	11
162	Waking Up the Stem Cell Niche. Circulation Research, 2015, 116, 389-392.	4.5	9

#	Article	IF	Citations
163	Leaking chemokines confuse neutrophils. Journal of Clinical Investigation, 2020, 130, 2177-2179.	8.2	9
164	Oxidative Modification of Leukocyte Adhesion. Immunity, 2005, 22, 5-7.	14.3	8
165	Classical monocyte transcriptomes reveal significant anti-inflammatory statin effect in women with chronic HIV. Cardiovascular Research, 2021, 117, 1166-1177.	3.8	8
166	Endothelial Heparan Sulfate Mediates Hepatic Neutrophil Trafficking and Injury during Staphylococcus aureus Sepsis. MBio, 2021, 12, e0118121.	4.1	8
167	The expanding family of neutrophilâ€derived extracellular vesicles. Immunological Reviews, 2022, 312, 52-60.	6.0	8
168	Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circulation Research, 2022, 131, 258-276.	4.5	8
169	Bone Marrow Transplantation Rescues Monocyte Recruitment Defect and Improves Cystic Fibrosis in Mice. Journal of Immunology, 2022, 208, 745-752.	0.8	7
170	A humanized \hat{I}^2 integrin knockin mouse reveals localized intra- and extravascular neutrophil integrin activation in \hat{A} vivo. Cell Reports, 2022, 39, 110876.	6.4	7
171	Leukocytes talking to VE-cadherin. Blood, 2013, 122, 2300-2301.	1.4	6
172	MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1575-1584.	6.3	6
173	CITE-Seq Hits Vascular Medicine. Clinical Chemistry, 2020, 66, 751-753.	3.2	6
174	Biomechanics of Neutrophil Tethers. Life, 2021, 11, 515.	2.4	6
175	Myeloid cell-specific Irf5 deficiency stabilizes atherosclerotic plaques in Apoe mice. Molecular Metabolism, 2021, 53, 101250.	6.5	6
176	Registering sequences of in vivo microscopy images for cell tracking using dynamic programming and minimum spanning trees. , 2014 , , .		5
177	HGF Guides T Cells into the Heart. Immunity, 2015, 42, 979-981.	14.3	5
178	Breaking a Vicious Cycle. New England Journal of Medicine, 2017, 376, 1172-1174.	27.0	5
179	Quantitative dynamic footprinting microscopy. Immunology and Cell Biology, 2013, 91, 311-320.	2.3	4
180	Arrest Chemokines. Frontiers in Immunology, 2014, 5, 150.	4.8	4

#	Article	IF	CITATIONS
181	Developing Neutrophils Must Eat…Themselves!. Immunity, 2017, 47, 393-395.	14.3	4
182	Data-Driven Kidney Transplant Phenotyping as a Histology-Independent Framework for Biomarker Discovery. Journal of the American Society of Nephrology: JASN, 2021, 32, 1933-1945.	6.1	4
183	Partial Inhibition of the 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase-3 (PFKFB3) Enzyme in Myeloid Cells Does Not Affect Atherosclerosis. Frontiers in Cell and Developmental Biology, 2021, 9, 695684.	3.7	4
184	Single-Cell in Research. Methods in Molecular Biology, 2022, 2419, 765-778.	0.9	4
185	Multi-cell 3D tracking with adaptive acceptance gates. , 2010, , .		3
186	CD63 positions CD62P for rolling. Blood, 2011, 118, 4012-4013.	1.4	2
187	Leukocyte Adhesion., 2018,, 171-203.		2
188	Autoimmune Regulator (AIRE) Deficiency Does Not Affect Atherosclerosis and CD4 T Cell Immune Tolerance to Apolipoprotein B. Frontiers in Cardiovascular Medicine, 2021, 8, 812769.	2.4	2
189	Shear field around adherent leukocytes as measured by Micro-PTV. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2007, , .	0.0	1
190	Super-STORM: Molecular Modeling to Achieve Single-molecule Localization with STORM Microscopy. STAR Protocols, 2020, 1 , 100012.	1.2	1
191	Blind Spot. JACC: CardioOncology, 2020, 2, 611-613.	4.0	1
192	Fortified Tregs to fight atherosclerosis. Cardiovascular Research, 2021, 117, 1987-1988.	3.8	1
193	Predicting Gene Expression From Computed Tomography Angiography. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1751-1752.	2.4	1
194	Selecting the Optimal Sequence for Deformable Registration of Microscopy Image Sequences Using Two-Stage MST-based Clustering Algorithm. Lecture Notes in Computer Science, 2017, , 353-361.	1.3	1
195	Event tracking model of adhesion identifies loadâ€bearing bonds in leukocyte rolling at low shear. FASEB Journal, 2008, 22, 166.6.	0.5	1
196	Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. Journal of Cell Biology, 2016, 213, 2136OIA120.	5.2	1
197	Thymus-Derived CD4+CD8+ Cells Reside in Mediastinal Adipose Tissue and the Aortic Arch. Journal of Immunology, 2021, 207, ji2100208.	0.8	1
198	Flow Cytometry and for Measuring the Immune Infiltrate in Atherosclerotic Arteries. Methods in Molecular Biology, 2022, 2419, 779-800.	0.9	1

#	Article	IF	Citations
199	Acoustic radiation force enhances ultrasound contrast agent retention to p-selectin in vivo., 0,,.		O
200	Momentum measure for quantifying dendritic cell movement., 2015,,.		0
201	A two-stage minimum spanning tree (MST) based clustering algorithm for 2D deformable registration of time sequenced images. , 2017, , .		О
202	A CD22â \in Shp1 phosphatase axis controls integrin \hat{l}^2 7 display and B cell function in mucosal immunity. FASEB Journal, 2021, 35, .	0.5	0
203	Role of chemokines in lymphocyte trafficking to the intestine in chronic murine ileitis. FASEB Journal, 2006, 20, A203.	0.5	0
204	oxLDL induces expression and activity of aldose reductase in human monocyteâ€derived macrophages. FASEB Journal, 2007, 21, A1411.	0.5	0
205	Microâ€PTV based blood flow velocity fields in mouse femoral arteries in vivo. FASEB Journal, 2007, 21, .	0.5	0
206	Galectin 3â€binding protein and clinical outcomes in patients with angiographically significant coronary artery disease. FASEB Journal, 2008, 22, 1152.21.	0.5	0
207	lmmunoreceptor tyrosineâ€based activation motif (ITAM)â€containing adapters DAP12 and FcRγ required for Eâ€selectin mediated slow rolling. FASEB Journal, 2008, 22, 1071.1.	0.5	0
208	Proteolytic shedding by ADAM 17 (TACE) functions as a gatekeeper for leukocyte emigration to inflammatory sites. FASEB Journal, 2008, 22, 166.4.	0.5	0
209	Microfluidic device functionalized with Pâ€selectin reveals discontinuous rolling of leukocytes in mouse whole blood. FASEB Journal, 2009, 23, 949.4.	0.5	0
210	Stressed microvilli and long tethers in rolling, tight adhesion zones and aft trunks in arresting neutrophils revealed using Total Internal Reflection Fluorescence Microscopy (TIRFM). FASEB Journal, 2010, 24, 590.2.	0.5	0
211	The plasma microparticle proteome updated. FASEB Journal, 2010, 24, 670.6.	0.5	0
212	Alteration of heparan sulfate 2â€Oâ€sulfation in endothelial cells enhances neutrophil infiltration in mice. FASEB Journal, 2012, 26, 609.1.	0.5	0
213	Avidity regulation of the leukocyte integrin LFAâ€1. FASEB Journal, 2013, 27, 138.2.	0.5	0
214	Abstract 44: Interleukin-27 Signaling is a Critical Regulator of Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
215	Abstract P342: Macrophage Markers are Associated with Atherosclerotic Plaque and Distensibility in the Women's Interagency HIV Study. Circulation, 2014, 129, .	1.6	0
216	Abstract 154: Atherosclerosis-specific CD4 T Cells Use the Chemokine CCL5 and Its Receptor CCR5 to Home to Mature Atherosclerotic Lesions in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0

#	Article	IF	CITATIONS
217	Abstract 361: Oxidized Phospholipids Are Proinflammatory and Proatherogenic. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	О
218	Abstract 239: Deficiency of Macrophage Epsins Impedes Atherosclerosis by Inhibiting LRP-1 Internalization and Degradation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
219	Abstract 21: A Natural Repertoire of T Cells Recognizing ApoB-100 is Generated Early in Life and is Progressively Depleted During Atherosclerotic Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
220	Abstract 351: MHC-II Tetramer-based Isolation of Atherosclerosis Autoantigen-specific T Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
221	Abstract 94: Deficiency of Epsins in Macrophages Ameliorates Atherosclerosis by Attenuating Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
222	Abstract 44: Failure of Protective Autoimmunity in Mouse and Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
223	Neutrophils form elongated shearâ€derived particles (SDP) via shedding tethers and slings. FASEB Journal, 2018, 32, 574.6.	0.5	0
224	Kindlinâ€3 recruitment to the plasma membrane in neutrophils precedes high affinity integrin activation. FASEB Journal, 2019, 33, 523.7.	0.5	0
225	Neutrophil ion currents matter. Cardiovascular Research, 2022, 118, 1165-1166.	3.8	0
226	A new β ₂ integrin activation reporter mouse reveals localized intra―and extra―ascular neutrophil integrin activation in vivo. FASEB Journal, 2022, 36, .	0.5	0
227	Abstract 51: The Role of CCL5 in T cell Recruitment to the Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	O
228	Abstract 11: T Cell Functions in a Novel Antigen-specific Experimentally-induced Model of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
229	Abstract 50: Absence of L-selectin Affects the Distribution of B Cell Subsets and Local Immune Response in Apoe-/- Aortas. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
230	Abstract 58: Delayed Atherosclerosis in a Mouse Model of Bernard-Soulier Syndrome is Independent of Glycoprotein Ibî± Extracytoplasmic Domain Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
231	Abstract 141: The Role of Macrophage Epsins in the Regulation of LRP-1 in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
232	De-stressing plaques attenuates atherosclerosis progression. Trends in Immunology, 2022, , .	6.8	0