List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2078035/publications.pdf Version: 2024-02-01

LINYING LIN

#	Article	IF	CITATIONS
1	Roles of the wound hormone jasmonate in plant regeneration. Journal of Experimental Botany, 2023, 74, 1198-1206.	2.4	15
2	Seasonal changes in cambium activity from active to dormant stage affect the formation of secondary xylem in <i>Pinus tabulaeformis</i> Carr Tree Physiology, 2022, 42, 585-599.	1.4	10
3	Spatial regulation of RBOHD via AtECA4â€mediated recycling and clathrinâ€mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22â€induced immune response. Plant Journal, 2022, 109, 816-830.	2.8	16
4	Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. Plant Physiology, 2022, 189, 23-36.	2.3	1
5	Rejuvenation increases leaf biomass and flavonoid accumulation in <i>Ginkgo biloba</i> . Horticulture Research, 2022, 9, .	2.9	26
6	The Chinese pine genome and methylome unveil key features of conifer evolution. Cell, 2022, 185, 204-217.e14.	13.5	151
7	Cytology, transcriptomics, and mass spectrometry imaging reveal changes in late-maturation elm (Ulmus pumila) seeds. Journal of Plant Physiology, 2022, 271, 153639.	1.6	1
8	Non-Coding RNA Analyses of Seasonal Cambium Activity in Populus tomentosa. Cells, 2022, 11, 640.	1.8	10
9	Environmental Cues Contribute to Dynamic Plasma Membrane Organization of Nanodomains Containing Flotillin-1 and Hypersensitive Induced Reaction-1 Proteins in Arabidopsis thaliana. Frontiers in Plant Science, 2022, 13, .	1.7	5
10	Genome-wide analysis of long non-coding RNAs in shoot apical meristem and vascular cambium in Populus tomentosa. Journal of Plant Physiology, 2022, 275, 153759.	1.6	4
11	Regulation of cytoskeletonâ€associated protein activities: Linking cellular signals to plant cytoskeletal function. Journal of Integrative Plant Biology, 2021, 63, 241-250.	4.1	28
12	Coordination of Phospholipid-Based Signaling and Membrane Trafficking in Plant Immunity. Trends in Plant Science, 2021, 26, 407-420.	4.3	29
13	In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics. Plant Physiology, 2021, 185, 1666-1681.	2.3	26
14	Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. Science China Life Sciences, 2021, 64, 1392-1422.	2.3	21
15	A label-free, fast and high-specificity technique for plant cell wall imaging and composition analysis. Plant Methods, 2021, 17, 29.	1.9	9
16	Age-dependent microRNAs in regulation of vascular cambium activity in Chinese fir (Cunninghamia) Tj ETQq0 0 C) rgBT /Ove	erlgck 10 Tf 5

17	Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity. Molecular Plant, 2021, 14, 588-603.	3.9	32
18	3D Imaging of Lipid-Guided Vesicle Trafficking Along the Cytoskeleton. Trends in Plant Science, 2021, 26, 421-422.	4.3	1

#	Article	IF	CITATIONS
19	Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biology, 2021, 22, 160.	3.8	35
20	Ginkgo biloba. Trends in Genetics, 2021, 37, 488-489.	2.9	10
21	Synaptotagmins at the endoplasmic reticulum–plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell, 2021, 33, 2431-2453.	3.1	41
22	Transcriptomic and epigenomic remodeling occurs during vascular cambium periodicity in Populus tomentosa. Horticulture Research, 2021, 8, 102.	2.9	16
23	Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. Plant Cell, 2021, 33, 3057-3075.	3.1	24
24	SNARE proteins VAMP721 and VAMP722 mediate the postâ€Golgi trafficking required for auxinâ€mediated development in Arabidopsis. Plant Journal, 2021, 108, 426-440.	2.8	24
25	Hydroponic cultivation conditions allowing the reproducible investigation of poplar root suberization and water transport. Plant Methods, 2021, 17, 129.	1.9	4
26	Three-dimensional reconstruction of Picea wilsonii Mast. pollen grains using automated electron microscopy. Science China Life Sciences, 2020, 63, 171-179.	2.3	20
27	Organization and dynamics of functional plant membrane microdomains. Cellular and Molecular Life Sciences, 2020, 77, 275-287.	2.4	26
28	Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old <i>Ginkgo biloba</i> trees. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2201-2210.	3.3	81
29	The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 2020, 21, 291.	3.8	23
30	MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Horticulture Research, 2020, 7, 118.	2.9	90
31	High-efficiency procedure to characterize, segment, and quantify complex multicellularity in raw micrographs in plants. Plant Methods, 2020, 16, 100.	1.9	8
32	The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in <i>Arabidopsis</i> . Development (Cambridge), 2020, 147, .	1.2	36
33	Systeminâ€mediated longâ€distance systemic defense responses. New Phytologist, 2020, 226, 1573-1582.	3.5	31
34	Single-Molecule Techniques for Imaging Exo-Endocytosis Coupling in Cells. Trends in Plant Science, 2019, 24, 879-880.	4.3	6
35	The Histone H3K4 Demethylase JMJ16 Represses Leaf Senescence in Arabidopsis. Plant Cell, 2019, 31, 430-443.	3.1	89
36	At the intersection of exocytosis and endocytosis in plants. New Phytologist, 2019, 224, 1479-1489.	3.5	63

JINXING LIN

#	Article	IF	CITATIONS
37	Advances in Imaging Plant Cell Walls. Trends in Plant Science, 2019, 24, 867-878.	4.3	79
38	TTL Proteins Scaffold Brassinosteroid Signaling Components at the Plasma Membrane to Optimize Signal Transduction in Arabidopsis. Plant Cell, 2019, 31, 1807-1828.	3.1	47
39	Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. Science China Life Sciences, 2019, 62, 619-632.	2.3	51
40	Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata). Trees - Structure and Function, 2019, 33, 827-836.	0.9	22
41	Phosphorylation-Mediated Dynamics of Nitrate Transceptor NRT1.1 Regulate Auxin Flux and Nitrate Signaling in Lateral Root Growth. Plant Physiology, 2019, 181, 480-498.	2.3	86
42	Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity. Plant Cell, 2019, 31, 3015-3032.	3.1	55
43	Extracting lipid vesicles from plasma membranes via self-assembly of clathrin-inspired scaffolding nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 176, 239-248.	2.5	5
44	Peptide Aptamers to Inhibit Protein Function in Plants. Trends in Plant Science, 2018, 23, 281-284.	4.3	9
45	Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. Annual Review of Plant Biology, 2018, 69, 525-551.	8.6	38
46	Arabidopsis Blue Light Receptor Phototropin 1 Undergoes Blue Light-Induced Activation in Membrane Microdomains. Molecular Plant, 2018, 11, 846-859.	3.9	44
47	Expression of tomato prosystemin gene in <i>Arabidopsis</i> reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytologist, 2018, 217, 799-812.	3.5	39
48	In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy. Journal of Plant Physiology, 2018, 220, 136-144.	1.6	21
49	Single-Particle Tracking for the Quantification of Membrane Protein Dynamics in Living Plant Cells. Molecular Plant, 2018, 11, 1315-1327.	3.9	32
50	Sterols regulate endocytic pathways during flg22-induced defense responses in <i>Arabidopsis</i> . Development (Cambridge), 2018, 145, .	1.2	43
51	Membrane microdomains and the cytoskeleton constrain At <scp>HIR</scp> 1 dynamics and facilitate the formation of an At <scp>HIR</scp> 1â€associated immune complex. Plant Journal, 2017, 90, 3-16.	2.8	66
52	The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. Journal of Plant Physiology, 2017, 215, 73-84.	1.6	31
53	A modified GFP facilitates counting membrane protein subunits by step-wise photobleaching in Arabidopsis. Journal of Plant Physiology, 2017, 213, 129-133.	1.6	9
54	THESEUS1 positively modulates plant defense responses against <i>Botrytis cinerea</i> through GUANINE EXCHANGE FACTOR4 signaling. Journal of Integrative Plant Biology, 2017, 59, 797-804.	4.1	37

#	Article	IF	CITATIONS
55	Tracking Tonoplast Protein Behaviors in Intact Vacuoles Isolated from Arabidopsis Leaves. Molecular Plant, 2017, 10, 349-352.	3.9	5
56	Quantification of Membrane Protein Dynamics and Interactions in Plant Cells by Fluorescence Correlation Spectroscopy. Molecular Plant, 2016, 9, 1229-1239.	3.9	26
57	Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Scientific Reports, 2016, 6, 19938.	1.6	20
58	Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. Plant Physiology, 2016, 171, 215-229.	2.3	56
59	An Effective and Inducible System of TAL Effector-Mediated Transcriptional Repression inÂArabidopsis. Molecular Plant, 2016, 9, 1546-1549.	3.9	5
60	Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of <i>Cunninghamia lanceolata</i> Seeds. Plant Physiology, 2016, 172, 2347-2362.	2.3	33
61	Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata. Journal of Plant Physiology, 2016, 200, 7-17.	1.6	19
62	Seasonal development of cambial activity in relation to xylem formation in Chinese fir. Journal of Plant Physiology, 2016, 195, 23-30.	1.6	16
63	Application of Variable Angle Total Internal Reflection Fluorescence Microscopy to Investigate Protein Dynamics in Intact Plant Cells. Methods in Molecular Biology, 2016, 1363, 123-132.	0.4	1
64	Subcellular Redistribution of Root Aquaporins Induced by Hydrogen Peroxide. Molecular Plant, 2015, 8, 1103-1114.	3.9	66
65	Endocytosis and its regulation in plants. Trends in Plant Science, 2015, 20, 388-397.	4.3	198
66	Spatiotemporal Dynamics of the BRI1 Receptor and its Regulation by Membrane Microdomains in Living Arabidopsis Cells. Molecular Plant, 2015, 8, 1334-1349.	3.9	131
67	Genome-wide analysis reveals dynamic changes in expression of microRNAs during vascular cambium development in Chinese fir, Cunninghamia lanceolata. Journal of Experimental Botany, 2015, 66, 3041-3054.	2.4	37
68	MicroRNA857 Is Involved in the Regulation of Secondary Growth of Vascular Tissues in Arabidopsis. Plant Physiology, 2015, 169, pp.01011.2015.	2.3	67
69	Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells. Nature Protocols, 2015, 10, 2054-2063.	5.5	60
70	Research progress on the regulation of cambium activity periodicity. Chinese Science Bulletin, 2015, 60, 619-629.	0.4	0
71	Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1729-1745.	3.1	182
72	γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta, 2013, 238, 831-843.	1.6	34

JINXING LIN

#	Article	IF	CITATIONS
73	Dynamic analysis of <i>Arabidopsis</i> AP2 Ïf subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development (Cambridge), 2013, 140, 3826-3837.	1.2	139

The regulation of cambial activity in $\langle scp \rangle C \langle scp \rangle$ hinese fir ($\langle i \rangle \langle scp \rangle C \langle scp \rangle$ unninghamia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 T

75	Probing plasma membrane dynamics at the single-molecule level. Trends in Plant Science, 2013, 18, 617-624.	4.3	39
76	Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop Journal, 2013, 1, 43-49.	2.3	142
77	Fullerene-Induced Increase of Clycosyl Residue on Living Plant Cell Wall. Environmental Science & Technology, 2013, 47, 7490-7498.	4.6	72
78	Reliable dissipative control of discreteâ€time switched singular systems with mixed time delays and stochastic actuator failures. IET Control Theory and Applications, 2013, 7, 1447-1462.	1.2	43
79	Single-particle analysis reveals shutoff control of the <i>Arabidopsis</i> ammonium transporter AMT1;3 by clustering and internalization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13204-13209.	3.3	91
80	Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Journal of Cell Science, 2013, 126, e1-e1.	1.2	0
81	The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in <i>Arabidopsis</i> Root Phototropism. Plant Cell, 2012, 24, 551-565.	3.1	113
82	Salt stress triggers enhanced cycling of Arabidopsis root plasma-membrane aquaporins. Plant Signaling and Behavior, 2012, 7, 529-532.	1.2	24
83	Transcriptome-wide identification and characterization of miRNAs from Pinus densata. BMC Genomics, 2012, 13, 132.	1.2	68
84	Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biology, 2012, 12, 146.	1.6	95
85	An <i>Arabidopsis</i> Class II Formin, AtFH19, Nucleates Actin Assembly, Binds to the Barbed End of Actin Filaments, and Antagonizes the Effect of AtFH1 on Actin Dynamics ^F . Journal of Integrative Plant Biology, 2012, 54, 800-813.	4.1	20
86	Proteomic and Phosphoproteomic Analysis of Picea wilsonii Pollen Development under Nutrient Limitation. Journal of Proteome Research, 2012, 11, 4180-4190.	1.8	19
87	Mutation in SUMO E3 ligase, SIZ1, Disrupts the Mature Female Gametophyte in Arabidopsis. PLoS ONE, 2012, 7, e29470.	1.1	28
88	A Membrane Microdomain-Associated Protein, <i>Arabidopsis</i> Flot1, Is Involved in a Clathrin-Independent Endocytic Pathway and Is Required for Seedling Development. Plant Cell, 2012, 24, 2105-2122.	3.1	200
89	Probing and tracking organelles in living plant cells. Protoplasma, 2012, 249, 157-167.	1.0	10
90	Phosphorylation and ubiquitination of dynaminâ€related proteins (AtDRP3A/3B) synergically regulate mitochondrial proliferation during mitosis. Plant Journal, 2012, 72, 43-56.	2.8	32

JINXING LIN

#	Article	IF	CITATIONS
91	Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings. Journal of Plant Physiology, 2011, 168, 1249-1255.	1.6	11
92	Golgi Apparatus-Localized Synaptotagmin 2 Is Required for Unconventional Secretion in Arabidopsis. PLoS ONE, 2011, 6, e26477.	1.1	51
93	Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (<i>Oryza sativa</i> L.) roots. Plant, Cell and Environment, 2011, 34, 1223-1240.	2.8	103
94	Reliable control for a class of uncertain singular systems with interval time-varying delay. Asian Journal of Control, 2011, 13, 542-552.	1.9	17
95	Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods, 2011, 7, 27.	1.9	51
96	Casparian strip development and its potential function in salt tolerance. Plant Signaling and Behavior, 2011, 6, 1499-1502.	1.2	98
97	Development of Casparian strip in rice cultivars. Plant Signaling and Behavior, 2011, 6, 59-65.	1.2	32
98	Single-Molecule Analysis of PIP2;1 Dynamics and Partitioning Reveals Multiple Modes of <i>Arabidopsis</i> Plasma Membrane Aquaporin Regulation Â. Plant Cell, 2011, 23, 3780-3797.	3.1	229
99	Arabidopsis R-SNARE Proteins VAMP721 and VAMP722 Are Required for Cell Plate Formation. PLoS ONE, 2011, 6, e26129.	1.1	86
100	Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant Journal, 2010, 61, 223-233.	2.8	116
101	The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta, 2010, 231, 779-791.	1.6	23
102	Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs. BMC Plant Biology, 2010, 10, 53.	1.6	36
103	Multiple receptor complexes assembled for transmitting CLV3 signaling in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 300-302.	1.2	9
104	Study of the Inhibitory Effect of Water-Soluble Fullerenes on Plant Growth at the Cellular Level. ACS Nano, 2010, 4, 5743-5748.	7.3	158
105	Calmodulin Binds to Extracellular Sites on the Plasma Membrane of Plant Cells and Elicits a Rise in Intracellular Calcium Concentration. Journal of Biological Chemistry, 2009, 284, 12000-12007.	1.6	35
106	Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of Â-tubulin and promoting vesicle transport. Journal of Experimental Botany, 2009, 60, 2737-2749.	2.4	37
107	Combined Proteomic and Cytological Analysis of Ca2+-Calmodulin Regulation in Picea meyeri Pollen Tube Growth Â. Plant Physiology, 2009, 149, 1111-1126.	2.3	55
108	Dynamic changes in flag leaf angle contribute to high photosynthetic capacity. Science Bulletin, 2009, 54, 3045-3052.	1.7	6

#	Article	IF	CITATIONS
109	Nitric oxide modulates the influx of extracellular Ca ²⁺ and actin filament organization during cell wall construction in <i>Pinus bungeana </i> pollen tubes. New Phytologist, 2009, 182, 851-862.	3.5	82
110	Actin Turnover Is Required for Myosin-Dependent Mitochondrial Movements in Arabidopsis Root Hairs. PLoS ONE, 2009, 4, e5961.	1.1	78
111	No Detectable Maternal Effects of Elevated CO2 on Arabidopsis thaliana Over 15 Generations. PLoS ONE, 2009, 4, e6035.	1.1	26

Pollen Viability, Pollination, Seed Set, and Seed Germination of Croftonweed (Eupatorium) Tj ETQq000 rgBT /Overlock 10 Tf 50 622 Td 0.8

113	Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl. and Picea wilsonii Mast. Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, 203, 332-340.	0.6	23
114	Integrative Proteomic and Cytological Analysis of the Effects of Extracellular Ca ²⁺ Influx on <i>Pinus bungeana</i> Pollen Tube Development. Journal of Proteome Research, 2008, 7, 4299-4312.	1.8	34
115	The localization of Rac GTPase in Picea willsonii pollen tubes implies roles in tube growth and the movement of the tube nucleus and sperm cells. Plant Science, 2007, 172, 1210-1217.	1.7	0
116	In vitro germination and growth of lily pollen tubes is affected by calcium inhibitor with reference to calcium distribution. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 581-588.	0.6	4
117	Disruption of Actin Filaments by Latrunculin B Affects Cell Wall Construction in Picea meyeri Pollen Tube by Disturbing Vesicle Trafficking. Plant and Cell Physiology, 2007, 48, 19-30.	1.5	93
118	Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine. Plant Cell Reports, 2007, 26, 673-682.	2.8	9
119	A rapid, efficient method for the mass production of pollen protoplasts from Pinus bungeana Zucc. ex Endl. and Picea wilsonii Mast Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 74-80.	0.6	4
120	Abnormalities in pistil development result in low seed set in Leymus chinensis (Poaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 658-667.	0.6	24
121	Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum, 2006, 127, 701-709.	2.6	92
122	Elevated CO 2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 2006, 172, 92-103.	3.5	302
123	Differential display proteomic analysis ofPicea meyeripollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant Journal, 2006, 47, 174-195.	2.8	68
124	How repeated epiphylly correlates with gene expression of resident knox1 in the leaves of tobacco epiphyllous shoots. Open Life Sciences, 2006, 1, 263-274.	0.6	1
125	AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration. Planta, 2006, 223, 283-290.	1.6	34
126	Expression of a transcription factor from Capsicum annuum in pine calli counteracts the inhibitory effects of salt stress on adventitious shoot formation. Molecular Genetics and Genomics, 2006, 276, 242-253.	1.0	25

#	Article	IF	CITATIONS
127	Effects of stem structure and cell wall components on bending strength in wheat. Science Bulletin, 2006, 51, 815-823.	4.3	36
128	Protein phosphatases 1 and 2A and the regulation of calcium uptake and pollen tube development in Picea wilsonii. Tree Physiology, 2006, 26, 1001-1012.	1.4	8
129	Roles of the Ubiquitin/Proteasome Pathway in Pollen Tube Growth with Emphasis on MG132-Induced Alterations in Ultrastructure, Cytoskeleton, and Cell Wall Components. Plant Physiology, 2006, 141, 1578-1590.	2.3	59
130	Imaging of Dynamic Secretory Vesicles in Living Pollen Tubes of Picea meyeri Using Evanescent Wave Microscopy. Plant Physiology, 2006, 141, 1591-1603.	2.3	75
131	Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. New Phytologist, 2005, 165, 721-730.	3.5	38
132	Effects of Brefeldin A on Pollen Germination and Tube Growth. Antagonistic Effects on Endocytosis and Secretion. Plant Physiology, 2005, 139, 1692-1703.	2.3	86
133	Casparian Strips in Needles are More Solute Permeable than Endodermal Transport Barriers in Roots of Pinus bungeana. Plant and Cell Physiology, 2005, 46, 1799-1808.	1.5	35
134	Microsporogenesis and pollen development in Leymus chinensis with emphasis on dynamic changes in callose deposition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 256-263.	0.6	20
135	Heterotrimeric G protein α-subunit is localized in the plasma membrane of Pinus bungeana pollen tubes. Plant Science, 2005, 169, 1066-1073.	1.7	7
136	Pollen Dispersion, Pollen Viability and Pistil Receptivity in Leymus chinensis. Annals of Botany, 2004, 93, 295-301.	1.4	103
137	Activity and distribution of carbonic anhydrase in leaf and ear parts of wheat (Triticum aestivumL.). Plant Science, 2004, 166, 627-632.	1.7	23
138	Pollen development in Picea asperata Mast Flora: Morphology, Distribution, Functional Ecology of Plants, 2003, 198, 112-117.	0.6	13
139	Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus) Tj ETQq1 1 0.7843	814 rgBT / 4.8	Overlock 10
140	Casparian strips in needles of Pinus bungeana : isolation and chemical characterization. Physiologia Plantarum, 2003, 117, 421-424.	2.6	14
141	Effect of GA3 spraying on lignin and auxin contents and the correlated enzyme activities in bayberry (Myrica rubra Bieb.) during flower-bud induction. Plant Science, 2003, 164, 549-556.	1.7	35
142	Relationships between tree increment, climate and above-ground biomass of grass: a case study in the typical steppe, north China. Acta Oecologica, 2003, 24, 87-94.	0.5	29
143	Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiology, 2003, 23, 345-351.	1.4	103
144	Positional variation of antipodal cells in polyembryonic rice Ap III before and after fertilization *. Progress in Natural Science: Materials International, 2003, 13, 814-818.	1.8	0

#	Article	IF	CITATIONS
145	The extreme drought in the 1920s and its effect on tree growth deduced from tree ring analysis: a case study in North China. Annals of Forest Science, 2003, 60, 145-152.	0.8	93
146	Significant overestimation of needle surface area estimates based on needle dimensions in Scots pine (Pinus sylvestris). Canadian Journal of Botany, 2002, 80, 927-932.	1.2	9
147	Structure and development of epiphylly in knox -transgenic tobacco. Planta, 2002, 214, 521-525.	1.6	7
148	Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems. Physiologia Plantarum, 2002, 114, 296-302.	2.6	67
149	The effect of crown position and tree age on resin-canal density in Scots pine (Pinus sylvestris L.) needles. Canadian Journal of Botany, 2001, 79, 1257-1261.	1.2	4
150	Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China. Trees - Structure and Function, 2001, 15, 230-235.	0.9	60
151	Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytologist, 2001, 150, 665-674.	3.5	88
	The effect of aroun position and tree are on racin concludentity in Sector nine (via Dinue subjective via) Ti ETO 0.0		uarlach 10 T

152 The effect of crown position and tree age on resin-canal density in Scots pine (<i>Pinus sylvestris</i>) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

153	The occurrence of vertical resin canals in Keteleeria, with reference to its systematic position in Pinaceae. Botanical Journal of the Linnean Society, 2000, 134, 567-574.	0.8	13
154	Atomic force microscopic observation on substructure of pollen exine inCedrus deodara andMetasequoia glyptostroboides. Science Bulletin, 2000, 45, 1500-1503.	1.7	5
155	Studies on inner wall structure of tracheids inTaxus chinensis with resin casting method. Science Bulletin, 1999, 44, 1379-1382.	1.7	4
156	Clonal analysis of the development of the barley (Hordeum vulgare L.) leaf using periclinal chlorophyll chimeras. Planta, 1999, 207, 335-342.	1.6	14
157	Taxonomic significance of extracellular crystals on the phloem fibres of Taxaceae. Flora: Morphology, Distribution, Functional Ecology of Plants, 1998, 193, 173-178.	0.6	3