
Yusheng Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2077394/publications.pdf Version: 2024-02-01

YUSHENC NUL

#	Article	IF	CITATIONS
1	Highâ€Performance Electrocatalytic Conversion of N ₂ to NH ₃ Using Oxygenâ€Vacancyâ€Rich TiO ₂ In Situ Grown on Ti ₃ C ₂ T <i>_x</i> MXene. Advanced Energy Materials, 2019, 9, 1803406.	19.5	346
2	Rational Design of Hydroxylâ€Rich Ti ₃ C ₂ T _x MXene Quantum Dots for Highâ€Performance Electrochemical N ₂ Reduction. Advanced Energy Materials, 2020, 10, 2000797.	19.5	153
3	Preparation of Ti ₃ C ₂ T <i>_x</i> MXeneâ€Derived Quantum Dots with White/Blueâ€Emitting Photoluminescence and Electrochemiluminescence. Advanced Optical Materials, 2018, 6, 1800951.	7.3	68
4	Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. Journal of Colloid and Interface Science, 2020, 559, 313-323.	9.4	58
5	VO _{<i>x</i>} Quantum Dots with Multienzyme-Mimic Activities and the Application in Constructing a Three-Dimensional (3D) Coordinate System for Accurate Discrimination of the Hydrogen Peroxide over a Broad Concentration Range. Analytical Chemistry, 2019, 91, 5753-5761.	6.5	38
6	Molybdenum oxide quantum dots prepared <i>via</i> a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. Journal of Materials Chemistry B, 2018, 6, 3240-3245.	5.8	35
7	Electrochemistry in Carbonâ€based Quantum Dots. Chemistry - an Asian Journal, 2020, 15, 1214-1224.	3.3	31
8	Generation of Vanadium Oxide Quantum Dots with Distinct Fluorescence and Antibacterial Activity via a Roomâ€Temperature Agitation Strategy. ChemNanoMat, 2018, 4, 1048-1053.	2.8	20
9	Heterogeneous Fenton-like magnetic nanosphere coated with vanadium oxide quantum dots for enhanced organic dyes decolorization. Journal of Colloid and Interface Science, 2020, 579, 269-281.	9.4	19
10	A MoFe nitrogenase-mimicking electrocatalyst for nitrogen fixation with high faradaic efficiency. Journal of Materials Chemistry A, 2020, 8, 19278-19282.	10.3	18
11	To Love and to Kill: Accurate and Selective Colorimetry for Both Chloride and Mercury Ions Regulated by Electro-Synthesized Oxidase-like SnTe Nanobelts. Analytical Chemistry, 2021, 93, 10132-10140.	6.5	16
12	Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. Journal of Colloid and Interface Science, 2022, 622, 117-125.	9.4	15
13	Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: Advances, challenges and perspectives. A mini review. Electrochemistry Communications, 2021, 125, 107002.	4.7	14
14	Application of a Cascaded Nanozyme in Infected Wound Recovery of Diabetic Mice. ACS Biomaterials Science and Engineering, 2022, 8, 1522-1531.	5.2	13
15	Sulfur doped molybdenum oxide quantum dots as efficient fluorescent labels and bacteriostatic. Inorganic Chemistry Communication, 2020, 122, 108275.	3.9	9
16	Recognition of the Enzymatically Active and Inhibitive Oxygenous Groups on WO _{3–<i>x</i>} Quantum Dots by Chemical Deactivation and Density Functional Theory Calculations. ACS Applied Bio Materials, 2020, 3, 1459-1468.	4.6	6
17	Intrinsic poorly-crystallized Fe5O7(OH)·4H2O: a highly efficient oxygen evolution reaction electrocatalyst under alkaline conditions. RSC Advances, 2019, 9, 42470-42473.	3.6	3
18	Environmental molybdate monitoring based on vanadium oxide quantum dots-derived fluorescent strategy. Microchemical Journal, 2021, 170, 106702.	4.5	3

#	Article	IF	CITATIONS
19	Preparation and application of Silica Quantum Dots using palygorskite as silicon source. Applied Clay Science, 2021, 211, 106132.	5.2	2