
Louise C Serpell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cerebral Cortex, 2023, 33, 1263-1276.	2.9	5
2	Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. Journal of Molecular Biology, 2022, 434, 167466.	4.2	18
3	A multiâ€hit hypothesis for an <i>APOE4</i> â€dependent pathophysiological state. European Journal of Neuroscience, 2022, 56, 5476-5515.	2.6	8
4	Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY. Journal of Molecular Biology, 2021, 433, 166732.	4.2	8
5	Oxidative Stress Conditions Result in Trapping of PHF-Core Tau (297–391) Intermediates. Cells, 2021, 10, 703.	4.1	9
6	An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Scientific Reports, 2021, 11, 11570.	3.3	9
7	AlphaFold: A Special Issue and A Special Time for Protein Science. Journal of Molecular Biology, 2021, 433, 167231.	4.2	15
8	Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorganic Chemistry, 2021, 60, 15310-15320.	4.0	3
9	The Disease Associated Tau35 Fragment has an Increased Propensity to Aggregate Compared to Full-Length Tau. Frontiers in Molecular Biosciences, 2021, 8, 779240.	3.5	8
10	HCN channelopathy couples diseaseâ€associated tau to synaptic dysfunction. Alzheimer's and Dementia, 2021, 17, e058346.	0.8	1
11	Self-assembly and cellular effect of tau35, a disease-associated tau fragment Alzheimer's and Dementia, 2021, 17 Suppl 3, e052072.	0.8	0
12	Tau (297â€391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer's disease brain. FEBS Letters, 2020, 594, 944-950.	2.8	56
13	Paired Helical Filament-Forming Region of Tau (297–391) Influences Endogenous Tau Protein and Accumulates in Acidic Compartments in Human Neuronal Cells. Journal of Molecular Biology, 2020, 432, 4891-4907.	4.2	15
14	MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments. Frontiers in Molecular Neuroscience, 2020, 13, 582488.	2.9	19
15	Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Frontiers in Neurology, 2020, 11, 590754.	2.4	32
16	Internalisation and toxicity of amyloidâ $\hat{\epsilon_{I}^2}$ 1â ϵ_{I} 42 are influenced by its conformation and assembly state rather than size. FEBS Letters, 2020, 594, 3490-3503.	2.8	27
17	Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly. Communications Chemistry, 2020, 3, .	4.5	25
18	Metal- and UV- Catalyzed Oxidation Results in Trapped Amyloid-β Intermediates Revealing that Self-Assembly Is Required for Aβ-Induced Cytotoxicity. IScience, 2020, 23, 101537.	4.1	18

#	Article	IF	CITATIONS
19	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	38.1	345
20	Misfolded amyloid-β-42 impairs the endosomal–lysosomal pathway. Cellular and Molecular Life Sciences, 2020, 77, 5031-5043.	5.4	36
21	Transition of Nano-Architectures Through Self-Assembly of Lipidated β3-Tripeptide Foldamers. Frontiers in Chemistry, 2020, 8, 217.	3.6	13
22	Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs. Biomolecular Concepts, 2020, 11, 102-115.	2.2	18
23	Using chirality to influence supramolecular gelation. Chemical Science, 2019, 10, 7801-7806.	7.4	40
24	A Biophysical Approach to the Identification of Novel ApoE Chemical Probes. Biomolecules, 2019, 9, 48.	4.0	7
25	Zinc–dysprosium functionalized amyloid fibrils. Dalton Transactions, 2019, 48, 15371-15375.	3.3	1
26	The Molecular Basis for Apolipoprotein E4 as the Major Risk Factor for Late-Onset Alzheimer's Disease. Journal of Molecular Biology, 2019, 431, 2248-2265.	4.2	29
27	The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?. Acta Neuropathologica Communications, 2019, 7, 31.	5.2	49
28	The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation. Scientific Reports, 2019, 9, 3123.	3.3	18
29	The involvement of dityrosine crosslinks in lipofuscin accumulation in Alzheimer's disease. Journal of Physics: Conference Series, 2019, 1294, 062107.	0.4	3
30	Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases. Methods in Molecular Biology, 2019, 1873, 109-122.	0.9	14
31	Formation of functional, nonâ€amyloidogenic fibres by recombinant <i>Bacillus subtilis</i> TasA. Molecular Microbiology, 2018, 110, 897-913.	2.5	37
32	Identifying the Coiled-Coil Triple Helix Structure of β-Peptide Nanofibers at Atomic Resolution. ACS Nano, 2018, 12, 9101-9109.	14.6	28
33	The involvement of tau in nucleolar transcription and the stress response. Acta Neuropathologica Communications, 2018, 6, 70.	5.2	74
34	Cysteine-Independent Inhibition of Alzheimer's Disease-like Paired Helical Filament Assembly by Leuco-Methylthioninium (LMT). Journal of Molecular Biology, 2018, 430, 4119-4131.	4.2	26
35	The Involvement of Aβ42 and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction. Frontiers in Cellular Neuroscience, 2018, 12, 220.	3.7	29
36	Controlling the network type in self-assembled dipeptide hydrogels. Soft Matter, 2017, 13, 1914-1919.	2.7	65

#	Article	IF	CITATIONS
37	Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloidâ€Î² 1â€42. FEBS Letters, 2017, 591, 822-830.	2.8	42
38	Cathepsin K as a novel amyloid fibril protein in humans. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 68-69.	3.0	2
39	Probing supramolecular protein assembly using covalently attached fluorescent molecular rotors. Biomaterials, 2017, 139, 195-201.	11.4	35
40	Structureâ€dependent effects of amyloidâ€Î² on longâ€term memory in <i>LymnaeaÂstagnalis</i> . FEBS Letters, 2017, 591, 1236-1246.	2.8	12
41	Alzheimer's Disease-like Paired Helical Filament Assembly from Truncated Tau Protein Is Independent of Disulfide Crosslinking. Journal of Molecular Biology, 2017, 429, 3650-3665.	4.2	70
42	The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides. Interface Focus, 2017, 7, 20170027.	3.0	20
43	The amyloid architecture provides a scaffold for enzyme-like catalysts. Nanoscale, 2017, 9, 10773-10783.	5.6	89
44	Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport. Journal of the American Chemical Society, 2017, 139, 8685-8692.	13.7	104
45	Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules, 2016, 6, 9.	4.0	114
46	Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology. Journal of Nanobiotechnology, 2016, 14, 79.	9.1	4
47	The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson's disease. Scientific Reports, 2016, 6, 39171.	3.3	71
48	De novo design of a biologically active amyloid. Science, 2016, 354, .	12.6	63
49	Characterization of Amyloid Cores in Prion Domains. Scientific Reports, 2016, 6, 34274.	3.3	56
50	A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration. Scientific Reports, 2016, 6, 30182.	3.3	63
51	Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles. Chemical Physics Letters, 2016, 648, 124-129.	2.6	4
52	Stabilization of native amyloid β-protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 249-259.	2.3	40
53	Silica Nanowires Templated by Amyloidâ€like Fibrils. Angewandte Chemie - International Edition, 2015, 54, 13327-13331.	13.8	20
54	Europium as an inhibitor of Amyloidâ€Î²(1â€42) induced membrane permeation. FEBS Letters, 2015, 589, 3228-3236.	2.8	9

#	Article	IF	CITATIONS
55	Silica Nanowires Templated by Amyloidâ€ŀike Fibrils. Angewandte Chemie, 2015, 127, 13525-13529.	2.0	6
56	Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network. Scientific Reports, 2015, 5, 10614.	3.3	27
57	Modular Design of Self-Assembling Peptide-Based Nanotubes. Journal of the American Chemical Society, 2015, 137, 10554-10562.	13.7	137
58	Hydrogels formed from Fmoc amino acids. CrystEngComm, 2015, 17, 8047-8057.	2.6	92
59	Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye, 2015, 29, 1013-1026.	2.1	133
60	WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics, 2015, 31, 1698-1700.	4.1	61
61	The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 882-895.	2.5	50
62	Two distinct Î ² -sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cellular and Molecular Life Sciences, 2015, 72, 4899-4913.	5.4	26
63	Structural determinants in a library of low molecular weight gelators. Soft Matter, 2015, 11, 1174-1181.	2.7	35
64	Computational De Novo Design of a Self-Assembling Peptide with Predefined Structure. Journal of Molecular Biology, 2015, 427, 550-562.	4.2	20
65	The relationship between amyloid structure and cytotoxicity. Prion, 2014, 8, 192-196.	1.8	53
66	Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1539-1544.	7.1	91
67	The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. Nanoscale, 2014, 6, 13719-13725.	5.6	92
68	Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies. Neuron, 2014, 82, 1271-1288.	8.1	822
69	Amyloid structure. Essays in Biochemistry, 2014, 56, 1-10.	4.7	15
70	A central role for dityrosine crosslinking of Amyloid-β in Alzheimer's disease. Acta Neuropathologica Communications, 2013, 1, 83.	5.2	150
71	Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. Journal of the American Chemical Society, 2013, 135, 15565-15578.	13.7	112
72	The Structure of Crossâ€Î² Tapes and Tubes Formed by an Octapeptide, αSβ1. Angewandte Chemie - International Edition, 2013, 52, 2279-2283.	13.8	46

#	Article	IF	CITATIONS
73	Chemically programmed self-sorting of gelator networks. Nature Communications, 2013, 4, 1480.	12.8	230
74	Exploring the sequence–structure relationship for amyloid peptides. Biochemical Journal, 2013, 450, 275-283.	3.7	43
75	Structural Basis for Increased Toxicity of Pathological Aβ42:Aβ40 Ratios in Alzheimer Disease. Journal of Biological Chemistry, 2012, 287, 5650-5660.	3.4	201
76	Visualization of co-localization in Aβ42-administered neuroblastoma cells reveals lysosome damage and autophagosome accumulation related to cell death. Biochemical Journal, 2012, 441, 579-590.	3.7	59
77	On Crystal versus Fiber Formation in Dipeptide Hydrogelator Systems. Langmuir, 2012, 28, 9797-9806.	3.5	114
78	Polyglutamine Aggregate Structure In Vitro and In Vivo; New Avenues for Coherent Anti-Stokes Raman Scattering Microscopy. PLoS ONE, 2012, 7, e40536.	2.5	14
79	X-Ray Fibre Diffraction Studies of Amyloid Fibrils. Methods in Molecular Biology, 2012, 849, 121-135.	0.9	85
80	Inflammation Protein SAA2.2 Spontaneously Forms Marginally Stable Amyloid Fibrils at Physiological Temperature. Biochemistry, 2011, 50, 9184-9191.	2.5	17
81	Salt-induced hydrogelation of functionalised-dipeptides at high pH. Chemical Communications, 2011, 47, 12071.	4.1	137
82	Aβ42 oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochemical Journal, 2011, 439, 67-77.	3.7	93
83	Membrane and surface interactions of Alzheimer's Aβ peptide – insights into the mechanism of cytotoxicity. FEBS Journal, 2011, 278, 3905-3917.	4.7	314
84	Hydrophobic, Aromatic, and Electrostatic Interactions Play a Central Role in Amyloid Fibril Formation and Stability. Biochemistry, 2011, 50, 2061-2071.	2.5	201
85	Iron Promotes the Toxicity of Amyloid β Peptide by Impeding Its Ordered Aggregation. Journal of Biological Chemistry, 2011, 286, 4248-4256.	3.4	182
86	Self-Assembly Mechanism for a Naphthaleneâ^'Dipeptide Leading to Hydrogelation. Langmuir, 2010, 26, 5232-5242.	3.5	208
87	Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature Methods, 2010, 7, 237-242.	19.0	566
88	Human β-Synuclein Rendered Fibrillogenic by Designed Mutations. Journal of Biological Chemistry, 2010, 285, 38555-38567.	3.4	15
89	Characterizing the Assembly of the Sup35 Yeast Prion Fragment, GNNQQNY: Structural Changes Accompany a Fiber-to-Crystal Switch. Biophysical Journal, 2010, 98, 330-338.	0.5	94
90	Effect of Molecular Structure on the Properties of Naphthaleneâ ^{~,} Dipeptide Hydrogelators. Langmuir, 2010, 26, 13466-13471.	3.5	169

#	Article	IF	CITATIONS
91	The Common Architecture of Cross-Î ² Amyloid. Journal of Molecular Biology, 2010, 395, 717-727.	4.2	261
92	Glucagon Fibril Polymorphism Reflects Differences in Protofilament Backbone Structure. Journal of Molecular Biology, 2010, 397, 932-946.	4.2	55
93	From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction. Chemical Society Reviews, 2010, 39, 3445.	38.1	79
94	The delicate balance between gelation and crystallisation: structural and computational investigations. Soft Matter, 2010, 6, 4144.	2.7	121
95	The Effect of Alzheimer's Aβ Aggregation State on the Permeation of Biomimetic Lipid Vesicles. Langmuir, 2010, 26, 17260-17268.	3.5	92
96	A new species of aplanosporic Haptoglossa, H.Âbeakesii, with vesiculate spore release. Botany, 2010, 88, 93-101.	1.0	4
97	Low molecular weight gelator–dextran composites. Chemical Communications, 2010, 46, 6738.	4.1	66
98	Fibres, crystals and polymorphism: the structural promiscuity of amyloidogenic peptides. Soft Matter, 2010, 6, 2110.	2.7	16
99	Structural Analysis of Proteinaceous Components in Byssal Threads of the Mussel <i>Mytilus galloprovincialis</i> . Macromolecular Bioscience, 2009, 9, 162-168.	4.1	44
100	Dehydration stability of amyloid fibrils studied by AFM. European Biophysics Journal, 2009, 38, 1135-1140.	2.2	30
101	Rational design and application of responsive α-helical peptide hydrogels. Nature Materials, 2009, 8, 596-600.	27.5	441
102	Cross-β Spine Architecture of Fibrils Formed by the Amyloidogenic Segment NFGSVQFV of Medin from Solid-State NMR and X-ray Fiber Diffraction Measurements. Biochemistry, 2009, 48, 3089-3099.	2.5	24
103	Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophysical Journal, 2009, 96, 5020-5029.	0.5	212
104	Flow Linear Dichroism of Some Prototypical Proteins. Journal of the American Chemical Society, 2009, 131, 13305-13314.	13.7	36
105	Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy. Archives of Histology and Cytology, 2009, 72, 199-207.	0.2	14
106	Structural integrity of Î ² -sheet assembly. Biochemical Society Transactions, 2009, 37, 671-676.	3.4	39
107	Revealing molecular-level surface structure of amyloid fibrils in liquid by means of frequency modulation atomic force microscopy. Nanotechnology, 2008, 19, 384010.	2.6	41
108	Structural Insights into the Polymorphism of Amyloid-Like Fibrils Formed by Region 20â^'29 of Amylin Revealed by Solid-State NMR and X-ray Fiber Diffraction. Journal of the American Chemical Society, 2008, 130, 14990-15001.	13.7	177

#	Article	IF	CITATIONS
109	Atomic Models of De Novo Designed ccβ-Met Amyloid-Like Fibrils. Journal of Molecular Biology, 2008, 376, 898-912.	4.2	34
110	Amyloid fibrils. Prion, 2008, 2, 112-117.	1.8	392
111	Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10853-10858.	7.1	234
112	Sequence Determinants for Amyloid Fibrillogenesis of Human α-Synuclein. Journal of Molecular Biology, 2007, 374, 454-464.	4.2	66
113	Structural analyses of fibrinogen amyloid fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2007, 14, 199-203.	3.0	35
114	Spider Silk and Amyloid Fibrils: A Structural Comparison. Macromolecular Bioscience, 2007, 7, 183-188.	4.1	161
115	CLEARER: a new tool for the analysis of X-ray fibre diffraction patterns and diffraction simulation from atomic structural models. Journal of Applied Crystallography, 2007, 40, 966-972.	4.5	94
116	A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone. Protein Science, 2007, 16, 906-918.	7.6	101
117	Synuclein Proteins of the Pufferfish Fugu rubripes:  Sequences and Functional Characterization. Biochemistry, 2006, 45, 2599-2607.	2.5	21
118	Polymerization of human angiotensinogen: insights into its structural mechanism and functional significance. Biochemical Journal, 2006, 400, 169-178.	3.7	5
119	Diffraction to study protein and peptide assemblies. Current Opinion in Chemical Biology, 2006, 10, 417-422.	6.1	43
120	Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Science, 2006, 15, 2481-2487.	7.6	18
121	Expression and Characterization of Full-length Human Huntingtin, an Elongated HEAT Repeat Protein*. Journal of Biological Chemistry, 2006, 281, 15916-15922.	3.4	71
122	X-Ray Diffraction Studies of Amyloid Structure. , 2005, 299, 067-080.		42
123	Structures for amyloid fibrils. FEBS Journal, 2005, 272, 5950-5961.	4.7	395
124	Structure and morphology of the Alzheimer's amyloid fibril. Microscopy Research and Technique, 2005, 67, 210-217.	2.2	73
125	Molecular basis for amyloid fibril formation and stability. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 315-320.	7.1	612
126	Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Letters, 2004, 576, 363-368.	2.8	241

#	Article	IF	CITATIONS
127	Structural Characterisation of Islet Amyloid Polypeptide Fibrils. Journal of Molecular Biology, 2004, 335, 1279-1288.	4.2	134
128	Protein Fiber Linear Dichroism for Structure Determination and Kinetics in a Low-Volume, Low-Wavelength Couette Flow Cell. Biophysical Journal, 2004, 86, 404-410.	0.5	72
129	Structure and Texture of Fibrous Crystals Formed by Alzheimer's Aβ(11–25) Peptide Fragment. Structure, 2003, 11, 915-926.	3.3	116
130	Nucleation of α1-Antichymotrypsin Polymerization. Biochemistry, 2003, 42, 2355-2363.	2.5	33
131	A Systematic Investigation into the Effect of Protein Destabilisation on Beta 2-Microglobulin Amyloid Formation. Journal of Molecular Biology, 2003, 330, 943-954.	4.2	140
132	Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-Â structure. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9034-9038.	7.1	281
133	Examining the structure of the mature amyloid fibril. Biochemical Society Transactions, 2002, 30, 521-525.	3.4	52
134	Three-dimensional structure of amyloid fibrils. Biochemical Society Transactions, 2002, 30, A54-A54.	3.4	0
135	A cluster of familial Creutzfeldt-Jakob disease mutations recapitulate conserved residues in Doppel: a case of molecular mimicry?. FEBS Letters, 2002, 532, 21-26.	2.8	4
136	Proteasomal degradation of tau protein. Journal of Neurochemistry, 2002, 83, 176-185.	3.9	302
137	Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO Journal, 2002, 21, 3863-3872.	7.8	161
138	Identification of a novel human islet amyloid polypeptide β-sheet domain and factors influencing fibrillogenesis. Journal of Molecular Biology, 2001, 308, 515-525.	4.2	226
139	From genetics to pathology: tau and a–synuclein assemblies in neurodegenerative diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 213-227.	4.0	58
140	Fiber diffraction of synthetic alpha -synuclein filaments shows amyloid-like cross-beta conformation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4897-4902.	7.1	722
141	Protofilaments, Filaments, Ribbons, and Fibrils from Peptidomimetic Self-Assembly:Â Implications for Amyloid Fibril Formation and Materials Science. Journal of the American Chemical Society, 2000, 122, 5262-5277.	13.7	286
142	Direct visualisation of the β-sheet structure of synthetic Alzheimer's amyloid 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 2000, 299, 225-231.	4.2	178
143	The protofilament substructure of amyloid fibrils11Edited by F. E. Cohen. Journal of Molecular Biology, 2000, 300, 1033-1039.	4.2	332
144	Presenilin structure, function and role in Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 1-15.	3.8	83

#	Article	IF	CITATIONS
145	Alzheimer's amyloid fibrils: structure and assembly. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 16-30.	3.8	828
146	Nucleated Conformational Conversion and the Replication of Conformational Information by a Prion Determinant. Science, 2000, 289, 1317-1321.	12.6	912
147	Molecular Structure of a Fibrillar Alzheimer's Aβ Fragmentâ€. Biochemistry, 2000, 39, 13269-13275.	2.5	161
148	[34] X-Ray fiber diffraction of amyloid fibrils. Methods in Enzymology, 1999, 309, 526-536.	1.0	107
149	Common core structure of amyloid fibrils by synchrotron X-ray diffraction 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1997, 273, 729-739.	4.2	1,590
150	The molecular basis of amyloidosis. Cellular and Molecular Life Sciences, 1997, 53, 871.	5.4	139
151	Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure, 1996, 4, 989-998.	3.3	387
152	The helix-hairpin-helix DNA-binding motif: a structural basis for non- sequence-specific recognition of DNA. Nucleic Acids Research, 1996, 24, 2488-2497.	14.5	334
153	The "edge strand―hypothesis: Prediction and test of a mutational "hot-spot―on the transthyretin molecule associated with FAP amyloidogenesis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1996, 3, 75-85.	3.0	27
154	A Molecular Model of the Amyloid Fibril. Novartis Foundation Symposium, 1996, 199, 6-21.	1.1	12
155	Examination of the Structure of the Transthyretin Amyloid Fibril by Image Reconstruction from Electron Micrographs. Journal of Molecular Biology, 1995, 254, 113-118.	4.2	149