Louise C Serpell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2076873/publications.pdf

Version: 2024-02-01

14655 11939 18,880 155 66 134 citations h-index g-index papers 175 175 175 17154 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Common core structure of amyloid fibrils by synchrotron X-ray diffraction 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1997, 273, 729-739.	4.2	1,590
2	Nucleated Conformational Conversion and the Replication of Conformational Information by a Prion Determinant. Science, 2000, 289, 1317-1321.	12.6	912
3	Alzheimer's amyloid fibrils: structure and assembly. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 16-30.	3.8	828
4	Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies. Neuron, 2014, 82, 1271-1288.	8.1	822
5	Fiber diffraction of synthetic alpha -synuclein filaments shows amyloid-like cross-beta conformation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4897-4902.	7.1	722
6	Molecular basis for amyloid fibril formation and stability. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 315-320.	7.1	612
7	Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature Methods, 2010, 7, 237-242.	19.0	566
8	Rational design and application of responsive α-helical peptide hydrogels. Nature Materials, 2009, 8, 596-600.	27.5	441
9	Structures for amyloid fibrils. FEBS Journal, 2005, 272, 5950-5961.	4.7	395
10	Amyloid fibrils. Prion, 2008, 2, 112-117.	1.8	392
11	Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous \hat{l}^2 -sheet helix. Structure, 1996, 4, 989-998.	3.3	387
12	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	38.1	345
13	The helix-hairpin-helix DNA-binding motif: a structural basis for non- sequence-specific recognition of DNA. Nucleic Acids Research, 1996, 24, 2488-2497.	14.5	334
14	The protofilament substructure of amyloid fibrils11Edited by F. E. Cohen. Journal of Molecular Biology, 2000, 300, 1033-1039.	4.2	332
15	Membrane and surface interactions of Alzheimer's Aβ peptide – insights into the mechanism of cytotoxicity. FEBS Journal, 2011, 278, 3905-3917.	4.7	314
16	Proteasomal degradation of tau protein. Journal of Neurochemistry, 2002, 83, 176-185.	3.9	302
17	Protofilaments, Filaments, Ribbons, and Fibrils from Peptidomimetic Self-Assembly:Â Implications for Amyloid Fibril Formation and Materials Science. Journal of the American Chemical Society, 2000, 122, 5262-5277.	13.7	286
18	Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-Â structure. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9034-9038.	7.1	281

#	Article	IF	Citations
19	The Common Architecture of Cross-Î ² Amyloid. Journal of Molecular Biology, 2010, 395, 717-727.	4.2	261
20	Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein. FEBS Letters, 2004, 576, 363-368.	2.8	241
21	Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10853-10858.	7.1	234
22	Chemically programmed self-sorting of gelator networks. Nature Communications, 2013, 4, 1480.	12.8	230
23	Identification of a novel human islet amyloid polypeptide \hat{l}^2 -sheet domain and factors influencing fibrillogenesis. Journal of Molecular Biology, 2001, 308, 515-525.	4.2	226
24	Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophysical Journal, 2009, 96, 5020-5029.	0.5	212
25	Self-Assembly Mechanism for a Naphthaleneâ^'Dipeptide Leading to Hydrogelation. Langmuir, 2010, 26, 5232-5242.	3.5	208
26	Hydrophobic, Aromatic, and Electrostatic Interactions Play a Central Role in Amyloid Fibril Formation and Stability. Biochemistry, 2011, 50, 2061-2071.	2.5	201
27	Structural Basis for Increased Toxicity of Pathological AÎ ² 42:AÎ ² 40 Ratios in Alzheimer Disease. Journal of Biological Chemistry, 2012, 287, 5650-5660.	3.4	201
28	Iron Promotes the Toxicity of Amyloid \hat{l}^2 Peptide by Impeding Its Ordered Aggregation. Journal of Biological Chemistry, 2011, 286, 4248-4256.	3.4	182
29	Direct visualisation of the β-sheet structure of synthetic Alzheimer's amyloid 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 2000, 299, 225-231.	4.2	178
30	Structural Insights into the Polymorphism of Amyloid-Like Fibrils Formed by Region 20â^29 of Amylin Revealed by Solid-State NMR and X-ray Fiber Diffraction. Journal of the American Chemical Society, 2008, 130, 14990-15001.	13.7	177
31	Effect of Molecular Structure on the Properties of Naphthaleneâ "Dipeptide Hydrogelators. Langmuir, 2010, 26, 13466-13471.	3.5	169
32	Molecular Structure of a Fibrillar Alzheimer's Aβ Fragmentâ€. Biochemistry, 2000, 39, 13269-13275.	2.5	161
33	Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO Journal, 2002, 21, 3863-3872.	7.8	161
34	Spider Silk and Amyloid Fibrils: A Structural Comparison. Macromolecular Bioscience, 2007, 7, 183-188.	4.1	161
35	A central role for dityrosine crosslinking of Amyloid- \hat{l}^2 in Alzheimerâ \in TM s disease. Acta Neuropathologica Communications, 2013, 1, 83.	5.2	150
36	Examination of the Structure of the Transthyretin Amyloid Fibril by Image Reconstruction from Electron Micrographs. Journal of Molecular Biology, 1995, 254, 113-118.	4.2	149

#	Article	IF	Citations
37	A Systematic Investigation into the Effect of Protein Destabilisation on Beta 2-Microglobulin Amyloid Formation. Journal of Molecular Biology, 2003, 330, 943-954.	4.2	140
38	The molecular basis of amyloidosis. Cellular and Molecular Life Sciences, 1997, 53, 871.	5.4	139
39	Salt-induced hydrogelation of functionalised-dipeptides at high pH. Chemical Communications, 2011, 47, 12071.	4.1	137
40	Modular Design of Self-Assembling Peptide-Based Nanotubes. Journal of the American Chemical Society, 2015, 137, 10554-10562.	13.7	137
41	Structural Characterisation of Islet Amyloid Polypeptide Fibrils. Journal of Molecular Biology, 2004, 335, 1279-1288.	4.2	134
42	Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye, 2015, 29, 1013-1026.	2.1	133
43	The delicate balance between gelation and crystallisation: structural and computational investigations. Soft Matter, 2010, 6, 4144.	2.7	121
44	Structure and Texture of Fibrous Crystals Formed by Alzheimer's Aβ(11–25) Peptide Fragment. Structure, 2003, 11, 915-926.	3.3	116
45	On Crystal versus Fiber Formation in Dipeptide Hydrogelator Systems. Langmuir, 2012, 28, 9797-9806.	3.5	114
46	Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules, 2016, 6, 9.	4.0	114
47	Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. Journal of the American Chemical Society, 2013, 135, 15565-15578.	13.7	112
48	[34] X-Ray fiber diffraction of amyloid fibrils. Methods in Enzymology, 1999, 309, 526-536.	1.0	107
49	Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport. Journal of the American Chemical Society, 2017, 139, 8685-8692.	13.7	104
50	A simple algorithm locates \hat{l}^2 -strands in the amyloid fibril core of \hat{l}_\pm -synuclein, $A\hat{l}^2$, and tau using the amino acid sequence alone. Protein Science, 2007, 16, 906-918.	7.6	101
51	CLEARER: a new tool for the analysis of X-ray fibre diffraction patterns and diffraction simulation from atomic structural models. Journal of Applied Crystallography, 2007, 40, 966-972.	4.5	94
52	Characterizing the Assembly of the Sup35 Yeast Prion Fragment, GNNQQNY: Structural Changes Accompany a Fiber-to-Crystal Switch. Biophysical Journal, 2010, 98, 330-338.	0.5	94
53	${\sf A\hat{l}^242}$ oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochemical Journal, 2011, 439, 67-77.	3.7	93
54	The Effect of Alzheimer's Aβ Aggregation State on the Permeation of Biomimetic Lipid Vesicles. Langmuir, 2010, 26, 17260-17268.	3.5	92

#	Article	IF	CITATIONS
55	The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. Nanoscale, 2014, 6, 13719-13725.	5.6	92
56	Hydrogels formed from Fmoc amino acids. CrystEngComm, 2015, 17, 8047-8057.	2.6	92
57	Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1539-1544.	7.1	91
58	The amyloid architecture provides a scaffold for enzyme-like catalysts. Nanoscale, 2017, 9, 10773-10783.	5.6	89
59	X-Ray Fibre Diffraction Studies of Amyloid Fibrils. Methods in Molecular Biology, 2012, 849, 121-135.	0.9	85
60	Presenilin structure, function and role in Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 1-15.	3.8	83
61	From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & 2010, 39, 3445.	38.1	79
62	The involvement of tau in nucleolar transcription and the stress response. Acta Neuropathologica Communications, 2018, 6, 70.	5.2	74
63	Structure and morphology of the Alzheimer's amyloid fibril. Microscopy Research and Technique, 2005, 67, 210-217.	2.2	73
64	Protein Fiber Linear Dichroism for Structure Determination and Kinetics in a Low-Volume, Low-Wavelength Couette Flow Cell. Biophysical Journal, 2004, 86, 404-410.	0.5	72
65	Expression and Characterization of Full-length Human Huntingtin, an Elongated HEAT Repeat Protein*. Journal of Biological Chemistry, 2006, 281, 15916-15922.	3.4	71
66	The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson's disease. Scientific Reports, 2016, 6, 39171.	3.3	71
67	Alzheimer's Disease-like Paired Helical Filament Assembly from Truncated Tau Protein Is Independent of Disulfide Crosslinking. Journal of Molecular Biology, 2017, 429, 3650-3665.	4.2	70
68	Sequence Determinants for Amyloid Fibrillogenesis of Human α-Synuclein. Journal of Molecular Biology, 2007, 374, 454-464.	4.2	66
69	Low molecular weight gelator–dextran composites. Chemical Communications, 2010, 46, 6738.	4.1	66
70	Controlling the network type in self-assembled dipeptide hydrogels. Soft Matter, 2017, 13, 1914-1919.	2.7	65
71	De novo design of a biologically active amyloid. Science, 2016, 354, .	12.6	63
72	A critical role for the self-assembly of Amyloid- \hat{l}^2 1-42 in neurodegeneration. Scientific Reports, 2016, 6, 30182.	3.3	63

#	Article	IF	Citations
73	WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics, 2015, 31, 1698-1700.	4.1	61
74	Visualization of co-localization in $\hat{Al^2}42$ -administered neuroblastoma cells reveals lysosome damage and autophagosome accumulation related to cell death. Biochemical Journal, 2012, 441, 579-590.	3.7	59
75	From genetics to pathology: tau and a–synuclein assemblies in neurodegenerative diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 213-227.	4.0	58
76	Characterization of Amyloid Cores in Prion Domains. Scientific Reports, 2016, 6, 34274.	3.3	56
77	Tau (297â€391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer's disease brain. FEBS Letters, 2020, 594, 944-950.	2.8	56
78	Glucagon Fibril Polymorphism Reflects Differences in Protofilament Backbone Structure. Journal of Molecular Biology, 2010, 397, 932-946.	4.2	55
79	The relationship between amyloid structure and cytotoxicity. Prion, 2014, 8, 192-196.	1.8	53
80	Examining the structure of the mature amyloid fibril. Biochemical Society Transactions, 2002, 30, 521-525.	3.4	52
81	The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 882-895.	2.5	50
82	The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?. Acta Neuropathologica Communications, 2019, 7, 31.	5.2	49
83	The Structure of Crossâ€Î² Tapes and Tubes Formed by an Octapeptide, αSβ1. Angewandte Chemie - International Edition, 2013, 52, 2279-2283.	13.8	46
84	Structural Analysis of Proteinaceous Components in Byssal Threads of the Mussel <i>Mytilus galloprovincialis</i> . Macromolecular Bioscience, 2009, 9, 162-168.	4.1	44
85	Diffraction to study protein and peptide assemblies. Current Opinion in Chemical Biology, 2006, 10, 417-422.	6.1	43
86	Exploring the sequence–structure relationship for amyloid peptides. Biochemical Journal, 2013, 450, 275-283.	3.7	43
87	X-Ray Diffraction Studies of Amyloid Structure. , 2005, 299, 067-080.		42
88	Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloidâ€Ĵ² 1â€42. FEBS Letters, 2017, 591, 822-830.	2.8	42
89	Revealing molecular-level surface structure of amyloid fibrils in liquid by means of frequency modulation atomic force microscopy. Nanotechnology, 2008, 19, 384010.	2.6	41
90	Stabilization of native amyloid \hat{l}^2 -protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 249-259.	2.3	40

#	Article	IF	Citations
91	Using chirality to influence supramolecular gelation. Chemical Science, 2019, 10, 7801-7806.	7.4	40
92	Structural integrity of Î ² -sheet assembly. Biochemical Society Transactions, 2009, 37, 671-676.	3.4	39
93	Formation of functional, nonâ€amyloidogenic fibres by recombinant <i>Bacillus subtilis</i> TasA. Molecular Microbiology, 2018, 110, 897-913.	2.5	37
94	Flow Linear Dichroism of Some Prototypical Proteins. Journal of the American Chemical Society, 2009, 131, 13305-13314.	13.7	36
95	Misfolded amyloid-β-42 impairs the endosomal–lysosomal pathway. Cellular and Molecular Life Sciences, 2020, 77, 5031-5043.	5.4	36
96	Structural analyses of fibrinogen amyloid fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2007, 14, 199-203.	3.0	35
97	Structural determinants in a library of low molecular weight gelators. Soft Matter, 2015, 11, 1174-1181.	2.7	35
98	Probing supramolecular protein assembly using covalently attached fluorescent molecular rotors. Biomaterials, 2017, 139, 195-201.	11,4	35
99	Atomic Models of De Novo Designed ccl ² -Met Amyloid-Like Fibrils. Journal of Molecular Biology, 2008, 376, 898-912.	4.2	34
100	Nucleation of $\hat{l}\pm 1$ -Antichymotrypsin Polymerization. Biochemistry, 2003, 42, 2355-2363.	2.5	33
101	Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Frontiers in Neurology, 2020, 11, 590754.	2.4	32
102	Dehydration stability of amyloid fibrils studied by AFM. European Biophysics Journal, 2009, 38, 1135-1140.	2,2	30
103	The Involvement of $\hat{Al^2}42$ and Tau in Nucleolar and Protein Synthesis Machinery Dysfunction. Frontiers in Cellular Neuroscience, 2018, 12, 220.	3.7	29
104	The Molecular Basis for Apolipoprotein E4 as the Major Risk Factor for Late-Onset Alzheimer's Disease. Journal of Molecular Biology, 2019, 431, 2248-2265.	4.2	29
105	Identifying the Coiled-Coil Triple Helix Structure of \hat{l}^2 -Peptide Nanofibers at Atomic Resolution. ACS Nano, 2018, 12, 9101-9109.	14.6	28
106	The "edge strand―hypothesis: Prediction and test of a mutational "hot-spot―on the transthyretin molecule associated with FAP amyloidogenesis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1996, 3, 75-85.	3.0	27
107	Effects of $\hat{Al^2}$ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network. Scientific Reports, 2015, 5, 10614.	3.3	27
108	Internalisation and toxicity of amyloid $\hat{\epsilon}\hat{\epsilon}^2$ $1\hat{a}\in$ 42 are influenced by its conformation and assembly state rather than size. FEBS Letters, 2020, 594, 3490-3503.	2.8	27

#	Article	IF	CITATIONS
109	Two distinct \hat{l}^2 -sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cellular and Molecular Life Sciences, 2015, 72, 4899-4913.	5.4	26
110	Cysteine-Independent Inhibition of Alzheimer's Disease-like Paired Helical Filament Assembly by Leuco-Methylthioninium (LMT). Journal of Molecular Biology, 2018, 430, 4119-4131.	4.2	26
111	Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly. Communications Chemistry, 2020, 3, .	4.5	25
112	Cross- \hat{l}^2 Spine Architecture of Fibrils Formed by the Amyloidogenic Segment NFGSVQFV of Medin from Solid-State NMR and X-ray Fiber Diffraction Measurements. Biochemistry, 2009, 48, 3089-3099.	2.5	24
113	Synuclein Proteins of the Pufferfish Fugu rubripes:  Sequences and Functional Characterization. Biochemistry, 2006, 45, 2599-2607.	2.5	21
114	Silica Nanowires Templated by Amyloidâ€ike Fibrils. Angewandte Chemie - International Edition, 2015, 54, 13327-13331.	13.8	20
115	Computational De Novo Design of a Self-Assembling Peptide with Predefined Structure. Journal of Molecular Biology, 2015, 427, 550-562.	4.2	20
116	The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides. Interface Focus, 2017, 7, 20170027.	3.0	20
117	MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments. Frontiers in Molecular Neuroscience, 2020, 13, 582488.	2.9	19
118	Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Science, 2006, 15, 2481-2487.	7.6	18
119	The CDR1 and Other Regions of Immunoglobulin Light Chains are Hot Spots for Amyloid Aggregation. Scientific Reports, 2019, 9, 3123.	3.3	18
120	Metal- and UV- Catalyzed Oxidation Results in Trapped Amyloid-Î ² Intermediates Revealing that Self-Assembly Is Required for AÎ ² -Induced Cytotoxicity. IScience, 2020, 23, 101537.	4.1	18
121	Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs. Biomolecular Concepts, 2020, 11, 102-115.	2.2	18
122	Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. Journal of Molecular Biology, 2022, 434, 167466.	4.2	18
123	Inflammation Protein SAA2.2 Spontaneously Forms Marginally Stable Amyloid Fibrils at Physiological Temperature. Biochemistry, 2011, 50, 9184-9191.	2.5	17
124	Fibres, crystals and polymorphism: the structural promiscuity of amyloidogenic peptides. Soft Matter, 2010, 6, 2110.	2.7	16
125	Human \hat{I}^2 -Synuclein Rendered Fibrillogenic by Designed Mutations. Journal of Biological Chemistry, 2010, 285, 38555-38567.	3.4	15
126	Paired Helical Filament-Forming Region of Tau (297–391) Influences Endogenous Tau Protein and Accumulates in Acidic Compartments in Human Neuronal Cells. Journal of Molecular Biology, 2020, 432, 4891-4907.	4.2	15

#	Article	IF	CITATIONS
127	AlphaFold: A Special Issue and A Special Time for Protein Science. Journal of Molecular Biology, 2021, 433, 167231.	4.2	15
128	Amyloid structure. Essays in Biochemistry, 2014, 56, 1-10.	4.7	15
129	Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy. Archives of Histology and Cytology, 2009, 72, 199-207.	0.2	14
130	Polyglutamine Aggregate Structure In Vitro and In Vivo; New Avenues for Coherent Anti-Stokes Raman Scattering Microscopy. PLoS ONE, 2012, 7, e40536.	2.5	14
131	Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases. Methods in Molecular Biology, 2019, 1873, 109-122.	0.9	14
132	Transition of Nano-Architectures Through Self-Assembly of Lipidated \hat{l}^2 3-Tripeptide Foldamers. Frontiers in Chemistry, 2020, 8, 217.	3.6	13
133	Structureâ€dependent effects of amyloidâ€Î² on longâ€term memory in <i>LymnaeaÂstagnalis</i> . FEBS Letters, 2017, 591, 1236-1246.	2.8	12
134	A Molecular Model of the Amyloid Fibril. Novartis Foundation Symposium, 1996, 199, 6-21.	1,1	12
135	Europium as an inhibitor of Amyloidâ€Î²(1â€42) induced membrane permeation. FEBS Letters, 2015, 589, 3228-3236.	2.8	9
136	Oxidative Stress Conditions Result in Trapping of PHF-Core Tau (297–391) Intermediates. Cells, 2021, 10, 703.	4.1	9
137	An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid- \hat{l}^2 . Scientific Reports, 2021, 11, 11570.	3.3	9
138	Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY. Journal of Molecular Biology, 2021, 433, 166732.	4.2	8
139	The Disease Associated Tau35 Fragment has an Increased Propensity to Aggregate Compared to Full-Length Tau. Frontiers in Molecular Biosciences, 2021, 8, 779240.	3.5	8
140	A multiâ€hit hypothesis for an <i>APOE4</i> â€dependent pathophysiological state. European Journal of Neuroscience, 2022, 56, 5476-5515.	2.6	8
141	A Biophysical Approach to the Identification of Novel ApoE Chemical Probes. Biomolecules, 2019, 9, 48.	4.0	7
142	Silica Nanowires Templated by Amyloidâ€ike Fibrils. Angewandte Chemie, 2015, 127, 13525-13529.	2.0	6
143	Polymerization of human angiotensinogen: insights into its structural mechanism and functional significance. Biochemical Journal, 2006, 400, 169-178.	3.7	5
144	Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cerebral Cortex, 2023, 33, 1263-1276.	2.9	5

#	Article	IF	CITATIONS
145	A cluster of familial Creutzfeldt-Jakob disease mutations recapitulate conserved residues in Doppel: a case of molecular mimicry?. FEBS Letters, 2002, 532, 21-26.	2.8	4
146	A new species of aplanosporic Haptoglossa, H.Âbeakesii, with vesiculate spore release. Botany, 2010, 88, 93-101.	1.0	4
147	Chemically and thermally stable silica nanowires with a \hat{l}^2 -sheet peptide core for bionanotechnology. Journal of Nanobiotechnology, 2016, 14, 79.	9.1	4
148	Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles. Chemical Physics Letters, 2016, 648, 124-129.	2.6	4
149	The involvement of dityrosine crosslinks in lipofuscin accumulation in Alzheimer's disease. Journal of Physics: Conference Series, 2019, 1294, 062107.	0.4	3
150	Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorganic Chemistry, 2021, 60, 15310-15320.	4.0	3
151	Cathepsin K as a novel amyloid fibril protein in humans. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 68-69.	3.0	2
152	Zinc–dysprosium functionalized amyloid fibrils. Dalton Transactions, 2019, 48, 15371-15375.	3.3	1
153	HCN channelopathy couples diseaseâ€associated tau to synaptic dysfunction. Alzheimer's and Dementia, 2021, 17, e058346.	0.8	1
154	Three-dimensional structure of amyloid fibrils. Biochemical Society Transactions, 2002, 30, A54-A54.	3.4	0
155	Self-assembly and cellular effect of tau35, a disease-associated tau fragment Alzheimer's and Dementia, 2021, 17 Suppl 3, e052072.	0.8	O