Xue-Hai Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2075991/publications.pdf Version: 2024-02-01

XIE-HALLIANC

#	Article	IF	CITATIONS
1	Cellular uptake and trafficking of antisense oligonucleotides. Nature Biotechnology, 2017, 35, 230-237.	17.5	416
2	Antisense technology: an overview and prospectus. Nature Reviews Drug Discovery, 2021, 20, 427-453.	46.4	299
3	Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nature Biotechnology, 2019, 37, 640-650.	17.5	205
4	rRNA Modifications in an Intersubunit Bridge of the Ribosome Strongly Affect Both Ribosome Biogenesis and Activity. Molecular Cell, 2007, 28, 965-977.	9.7	192
5	Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. Rna, 2009, 15, 1716-1728.	3.5	186
6	RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus. Molecular Therapy, 2017, 25, 2075-2092.	8.2	168
7	Phosphorothioate modified oligonucleotide–protein interactions. Nucleic Acids Research, 2020, 48, 5235-5253.	14.5	163
8	Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Research, 2015, 43, 2927-2945.	14.5	151
9	Antisense technology: A review. Journal of Biological Chemistry, 2021, 296, 100416.	3.4	149
10	Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nature Biotechnology, 2016, 34, 875-880.	17.5	137
11	2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Research, 2015, 43, 4569-4578.	14.5	97
12	Phosphorothioate oligonucleotides can displace <i>NEAT1</i> RNA and form nuclear paraspeckle-like structures. Nucleic Acids Research, 2014, 42, 8648-8662.	14.5	87
13	Viable <i>RNaseH1</i> knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function. Nucleic Acids Research, 2016, 44, 5299-5312.	14.5	84
14	Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Research, 2017, 45, 9528-9546.	14.5	83
15	TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Research, 2014, 42, 7819-7832.	14.5	80
16	Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Research, 2019, 47, 5465-5479.	14.5	77
17	The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. Journal of the American Chemical Society, 2020, 142, 14754-14771.	13.7	77
18	The Helicase Has1p Is Required for snoRNA Release from Pre-rRNA. Molecular and Cellular Biology, 2006, 26, 7437-7450.	2.3	75

XUE-HAI LIANG

#	Article	IF	CITATIONS
19	Acute hepatotoxicity of 2′ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Research, 2018, 46, 2204-2217.	14.5	71
20	Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity. Nucleic Acids Research, 2016, 44, 3892-3907.	14.5	65
21	Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Research, 2020, 48, 1691-1700.	14.5	63
22	Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Research, 2011, 39, e13-e13.	14.5	62
23	Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Research, 2021, 49, 9026-9041.	14.5	61
24	Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Research, 2017, 45, 5309-5322.	14.5	60
25	Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides. Nucleic Acids Research, 2016, 44, gkw595.	14.5	58
26	Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Research, 2018, 46, 3579-3594.	14.5	58
27	RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Research, 2016, 44, 3351-3363.	14.5	57
28	Origins of the Increased Affinity of Phosphorothioate-Modified Therapeutic Nucleic Acids for Proteins. Journal of the American Chemical Society, 2020, 142, 7456-7468.	13.7	56
29	Antisense drug discovery and development technology considered in a pharmacological context. Biochemical Pharmacology, 2021, 189, 114196.	4.4	55
30	Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing. Nucleic Acids Research, 2011, 39, 4875-4889.	14.5	50
31	Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Nucleic Acids Research, 2017, 45, 10649-10671.	14.5	50
32	Lipid Conjugates Enhance Endosomal Release of Antisense Oligonucleotides Into Cells. Nucleic Acid Therapeutics, 2019, 29, 245-255.	3.6	48
33	Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Research, 2017, 45, 10672-10692.	14.5	44
34	Human RNase H1 Is Associated with Protein P32 and Is Involved in Mitochondrial Pre-rRNA Processing. PLoS ONE, 2013, 8, e71006.	2.5	43
35	Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 455-468.	1.9	36
36	mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway. Nucleic Acids Research, 2019, 47, 6900-6916.	14.5	32

Xue-Hai Liang

#	Article	IF	CITATIONS
37	Golgi-endosome transport mediated by M6PR facilitates release of antisense oligonucleotides from endosomes. Nucleic Acids Research, 2020, 48, 1372-1391.	14.5	32
38	COPII vesicles can affect the activity of antisense oligonucleotides by facilitating the release of oligonucleotides from endocytic pathways. Nucleic Acids Research, 2018, 46, 10225-10245.	14.5	31
39	Site-specific incorporation of 5â€2-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Research, 2021, 49, 1828-1839.	14.5	26
40	Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. PLoS ONE, 2017, 12, e0173494.	2.5	26
41	Strong dependence between functional domains in a dual-function snoRNA infers coupling of rRNA processing and modification events. Nucleic Acids Research, 2010, 38, 3376-3387.	14.5	17
42	Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Research, 2018, 46, 293-313.	14.5	15
43	Membrane Destabilization Induced by Lipid Species Increases Activity of Phosphorothioate-Antisense Oligonucleotides. Molecular Therapy - Nucleic Acids, 2018, 13, 686-698.	5.1	15
44	Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames. Advances in Experimental Medicine and Biology, 2017, 983, 129-146.	1.6	15
45	Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Research, 2020, 48, 9840-9858.	14.5	14
46	Site-specific Incorporation of 2′,5′-Linked Nucleic Acids Enhances Therapeutic Profile of Antisense Oligonucleotides. ACS Medicinal Chemistry Letters, 2021, 12, 922-927.	2.8	13
47	RNA helicase A is not required for RISC activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1092-1101.	1.9	10
48	Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins. Nucleic Acids Research, 2021, 49, 2721-2739.	14.5	10
49	Solid-Phase Separation of Toxic Phosphorothioate Antisense Oligonucleotide-Protein Nucleolar Aggregates Is Cytoprotective. Nucleic Acid Therapeutics, 2021, 31, 126-144.	3.6	10
50	Structural basis of dimerization and nucleic acid binding of human DBHS proteins NONO and PSPC1. Nucleic Acids Research, 2022, 50, 522-535.	14.5	10
51	Phosphorothioate Antisense Oligonucleotides Bind P-Body Proteins and Mediate P-Body Assembly. Nucleic Acid Therapeutics, 2019, 29, 343-358.	3.6	9
52	Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms. Nucleic Acid Therapeutics, 2020, 30, 312-324.	3.6	7
53	Golgi-58K can re-localize to late endosomes upon cellular uptake of PS-ASOs and facilitates endosomal release of ASOs. Nucleic Acids Research, 2021, 49, 8277-8293.	14.5	7
54	RNA modifications can affect RNase H1-mediated PS-ASO activity. Molecular Therapy - Nucleic Acids, 2022, 28, 814-828.	5.1	7

#	Article	IF	CITATIONS
55	Insights into innate immune activation via PS-ASO–protein–TLR9 interactions. Nucleic Acids Research, 2022, 50, 8107-8126.	14.5	7
56	Hsc70 Facilitates Mannose-6-Phosphate Receptor-Mediated Intracellular Trafficking and Enhances Endosomal Release of Phosphorothioate-Modified Antisense Oligonucleotides. Nucleic Acid Therapeutics, 2021, 31, 284-297.	3.6	4
57	Perinuclear positioning of endosomes can affect PS-ASO activities. Nucleic Acids Research, 2021, 49, 12970-12985.	14.5	3