
MarÃ-a GonzÃ;lez-Béjar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/207562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Analytical and Bioanalytical Chemistry, 2022, 414, 4291-4310.	3.7	5
2	Correction: NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. Nanoscale, 2021, 13, 14254-14254.	5.6	0
3	NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. Nanoscale, 2021, 13, 10067-10080.	5.6	4
4	Photoactive Hybrid Materials based on Conjugated Porous Polymers and Inorganic Nanoparticles. Advanced Photonics Research, 2021, 2, 2100060.	3.6	0
5	Initial Biological Assessment of Upconversion Nanohybrids. Biomedicines, 2021, 9, 1419.	3.2	10
6	Linear Coassembly of Upconversion and Perovskite Nanoparticles: Sensitized Upconversion Emission of Perovskites by Lanthanideâ€Đoped Nanoparticles. Advanced Functional Materials, 2020, 30, 2003766.	14.9	19
7	Functional Nanohybrids Based on Dyes and Upconversion Nanoparticles. Structure and Bonding, 2020, , 371-396.	1.0	1
8	Lengthening the Lifetime of Common Emissive Probes to Microseconds by a Jigsaw‣ike Construction of NIRâ€Responsive Nanohybrids. Advanced Optical Materials, 2020, 8, 1902030.	7.3	8
9	Polysulfonate Cappings on Upconversion Nanoparticles Prevent Their Disintegration in Water and Provide Superior Stability in a Highly Acidic Medium. ACS Omega, 2019, 4, 3012-3019.	3.5	28
10	Understanding light-driven H ₂ evolution through the electronic tuning of aminopyridine cobalt complexes. Chemical Science, 2018, 9, 2609-2619.	7.4	31
11	Nanohybrid for Photodynamic Therapy and Fluorescence Imaging Tracking without Therapy. Chemistry of Materials, 2018, 30, 3677-3682.	6.7	30
12	Breaking the Nd3+-sensitized upconversion nanoparticles myth about the need of onion-layered structures. Nanoscale, 2018, 10, 12297-12301.	5.6	12
13	Photophysics of 7-mercapto-4-methylcoumarin and derivatives: complementary fluorescence behaviour to 7-hydroxycoumarins. Photochemical and Photobiological Sciences, 2017, 16, 1284-1289.	2.9	15
14	A Metalâ€Free, Nonconjugated Polymer for Solar Photocatalysis. Chemistry - A European Journal, 2017, 23, 2867-2876.	3.3	7
15	Upconversion Nanoparticles for Bioimaging and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2016, 4, 47.	4.1	76
16	Efficient Cementing of CH ₃ NH ₃ PbBr ₃ Nanoparticles to Upconversion Nanoparticles Visualized by Confocal Microscopy. Advanced Functional Materials, 2016, 26, 5131-5138.	14.9	36
17	Adenosine monophosphate-capped gold(<scp>i</scp>) nanoclusters: synthesis and lanthanide ion-induced enhancement of their luminescence. RSC Advances, 2016, 6, 17678-17682.	3.6	21
18	5 Synergistic Effects in Organic-Coated Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 101-138.	0.0	5

#	Article	IF	CITATIONS
19	The Luminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. Small, 2016, 12, 5245-5250.	10.0	116
20	Upconversion nanoparticles with a strong acid-resistant capping. Nanoscale, 2016, 8, 7588-7594.	5.6	18
21	Energy transfer in diiodoBodipy-grafted upconversion nanohybrids. Nanoscale, 2016, 8, 204-208.	5.6	10
22	Application of the Generalized Molarâ€Ratio Method to the Determination of the Stoichiometry and Apparent Binding Constant of Nanoparticleâ€Organic Capping Systems. Electroanalysis, 2015, 27, 2302-2312.	2.9	3
23	Cucurbit[<i>n</i>]uril-capped upconversion nanoparticles as highly emissive scaffolds for energy acceptors. Nanoscale, 2015, 7, 5140-5146.	5.6	17
24	Silver Nanoparticles in Heterogeneous Plasmon Mediated Catalysis. Engineering Materials, 2015, , 71-92.	0.6	2
25	Upconversion luminescent nanoparticles in physical sensing and in monitoring physical processes in biological samples. Methods and Applications in Fluorescence, 2015, 3, 042002.	2.3	24
26	Triggering the Generation of an Iron(IV)-Oxo Compound and Its Reactivity toward Sulfides by Ru ^{II} Photocatalysis. Journal of the American Chemical Society, 2014, 136, 4624-4633.	13.7	72
27	Enhanced catalytic electrochemical reduction of dissolved oxygen with ultraclean cucurbituril[7]-capped gold nanoparticles. Nanoscale, 2014, 6, 9550-9553.	5.6	21
28	NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death. Journal of Materials Chemistry B, 2014, 2, 4554-4563.	5.8	40
29	Thin Amphiphilic Polymer-Capped Upconversion Nanoparticles: Enhanced Emission and Thermoresponsive Properties. Chemistry of Materials, 2014, 26, 4014-4022.	6.7	46
30	Epoxidation of stilbene using supported gold nanoparticles: cumyl peroxyl radical activation at the gold nanoparticle surface. Chemical Communications, 2014, 50, 2289.	4.1	11
31	Reversible phase transfer of quantum dots by gas bubbling. Green Materials, 2014, 2, 62-68.	2.1	6
32	Sensitive and Selective Plasmonic Assay for Spermine as Biomarker in Human Urine. Analytical Chemistry, 2014, 86, 1347-1351.	6.5	43
33	Texture and Phase Recognition Analysis of β-NaYF ₄ Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 11404-11408.	3.1	9
34	Insights into the Mechanism of Cumene Peroxidation Using Supported Gold and Silver Nanoparticles. ACS Catalysis, 2013, 3, 2062-2071.	11.2	28
35	In Situ Colorimetric Quantification of Silver Cations in the Presence of Silver Nanoparticles. Analytical Chemistry, 2013, 85, 10013-10016.	6.5	45
36	Orthogonal Functionalisation of Upconverting NaYF ₄ Nanocrystals. Chemistry - A European Journal, 2013, 19, 13538-13546.	3.3	27

#	Article	IF	CITATIONS
37	Ketorolac beats ketoprofen: lower photodecarboxylation, photohemolysis and phototoxicity. MedChemComm, 2013, 4, 1619.	3.4	2
38	Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chemical Communications, 2013, 49, 1732.	4.1	79
39	CO2 switchable nanoparticles: reversible water/organic-phase exchange of gold nanoparticles by gas bubbling. RSC Advances, 2013, 3, 4867.	3.6	11
40	Supported Gold Nanoparticles as Efficient Catalysts in the Solventless Plasmon Mediated Oxidation of <i>sec</i> -Phenethyl and Benzyl Alcohol. Journal of Physical Chemistry C, 2013, 117, 12279-12288.	3.1	56
41	Gold nanoparticle catalysis of the cis–trans isomerization of azobenzene. Chemical Communications, 2013, 49, 10073.	4.1	73
42	Ultraclean Derivatized Monodisperse Gold Nanoparticles through Laser Drop Ablation Customization of Polymorph Gold Nanostructures. Langmuir, 2012, 28, 8183-8189.	3.5	24
43	Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril. Photochemical and Photobiological Sciences, 2012, 11, 269-273.	2.9	18
44	The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials, 2012, 33, 4947-4956.	11.4	200
45	Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 2011, 83, 913-930.	1.9	38
46	Plasmon-Mediated Catalytic Oxidation of <i>sec</i> -Phenethyl and Benzyl Alcohols. Journal of Physical Chemistry C, 2011, 115, 10784-10790.	3.1	88
47	Dry photochemical synthesis of hydrotalcite, γ-Al2O3 and TiO2 supported gold nanoparticle catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 224, 8-15.	3.9	23
48	Photobehavior of merocyanine 540 bound to human serum albumin. Photochemical and Photobiological Sciences, 2010, 9, 861-869.	2.9	43
49	Stereoselective Interaction of Epimeric Naproxen-RGD Peptides with Human Serum Albumin. Biomacromolecules, 2010, 11, 2255-2260.	5.4	21
50	Surface Plasmons Control the Dynamics of Excited Triplet States in the Presence of Gold Nanoparticles. Journal of the American Chemical Society, 2010, 132, 6298-6299.	13.7	68
51	Photophysical characterization of atorvastatin (Lipitor®) ortho-hydroxy metabolite: role of hydroxyl group on the drug photochemistry. Photochemical and Photobiological Sciences, 2010, 9, 1378.	2.9	13
52	On-off QD switch that memorizes past recovery from quenching by diazonium salts. Physical Chemistry Chemical Physics, 2010, 12, 9757.	2.8	6
53	Cucurbituril complexes cross the cell membrane. Photochemical and Photobiological Sciences, 2009, 8, 1743-1747.	2.9	101
54	Methylene Blue Encapsulation in Cucurbit[7]uril: Laser Flash Photolysis and Near-IR Luminescence Studies of the Interaction with Oxygen. Langmuir, 2009, 25, 10490-10494.	3.5	74

#	Article	IF	CITATIONS
55	7-Mercapto-4-methylcoumarin as a reporter of thiol binding to the CdSe quantum dot surface. Chemical Communications, 2009, , 3202.	4.1	17
56	Pyreneâ^'Benzoylthiophene Exciplexes as Selective Catalysts for the [2+2] Cycloaddition between Cyclohexadiene and Styrenes. Organic Letters, 2007, 9, 2067-2070.	4.6	10
57	Positive Photocatalysis of a Dielsâ^'Alder Reaction by Quenching of Excited Naphthaleneâ^'Indole Charge-Transfer Complex with Cyclohexadiene. Organic Letters, 2007, 9, 453-456.	4.6	18
58	Diels-Alder reaction between indoles and cyclohexadienes photocatalyzed by a (thia)pyrylium salt. Arkivoc, 2007, 2007, 344-355.	0.5	3
59	Mechanism of Triplet Photosensitized Dielsâ^'Alder Reaction between Indoles and Cyclohexadienes:Â Theoretical Support for an Adiabatic Pathway. Journal of Organic Chemistry, 2006, 71, 6932-6941.	3.2	23
60	Pyrene-benzoylthiophene bichromophores as selective triplet photosensitizers. Chemical Communications, 2005, , 5569.	4.1	16
61	Dielsâ^'Alder Reaction between Indoles and Cyclohexadienes Photocatalyzed by Ï€,Ï€* Aromatic Ketones. Organic Letters, 2004, 6, 3905-3908.	4.6	13