M Antonia López-Antón

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2074451/publications.pdf

Version: 2024-02-01

75 papers 2,770 citations

32 h-index 51 g-index

75 all docs

75 docs citations

75 times ranked

1851 citing authors

#	Article	IF	Citations
1	Analysis of mercury species present during coal combustion by thermal desorption. Fuel, 2010, 89, 629-634.	6.4	185
2	Mercury compounds characterization by thermal desorption. Talanta, 2013, 114, 318-322.	5 . 5	183
3	Stable Lead Isotope Compositions In Selected Coals From Around The World And Implications For Present Day Aerosol Source Tracing. Environmental Science & Environmental Science & 2009, 43, 1078-1085.	10.0	159
4	Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system. Fuel, 2012, 92, 145-157.	6.4	111
5	Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Processing Technology, 2007, 88, 799-805.	7.2	96
6	Speciation of mercury in fly ashes by temperature programmed decomposition. Fuel Processing Technology, 2011, 92, 707-711.	7.2	89
7	Arsenic and Selenium Capture by Fly Ashes at Low Temperature. Environmental Science & Emp; Technology, 2006, 40, 3947-3951.	10.0	74
8	Mercury policy and regulations for coal-fired power plants. Environmental Science and Pollution Research, 2012, 19, 1084-1096.	5.3	67
9	Application of mercury temperature programmed desorption (HgTPD) to ascertain mercury/char interactions. Fuel Processing Technology, 2015, 132, 9-14.	7.2	67
10	Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel Processing Technology, 2011, 92, 1764-1775.	7.2	65
11	A new approach to mercury speciation in solids using a thermal desorption technique. Fuel, 2015, 160, 525-530.	6.4	64
12	Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition. Fuel, 2010, 89, 2157-2159.	6.4	63
13	Retention of mercury in activated carbons in coal combustion and gasification flue gases. Fuel Processing Technology, 2002, 77-78, 353-358.	7.2	60
14	Thallium in coal: Analysis and environmental implications. Fuel, 2013, 105, 13-18.	6.4	59
15	Application of thermal desorption for the identification of mercury species in solids derived from coal utilization. Chemosphere, 2015, 119, 459-465.	8.2	59
16	The influence of carbon particle type in fly ashes on mercury adsorption. Fuel, 2009, 88, 1194-1200.	6.4	57
17	Regenerable sorbents for mercury capture in simulated coal combustion flue gas. Journal of Hazardous Materials, 2013, 260, 869-877.	12.4	57
18	The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury. Chemical Engineering Journal, 2011, 174, 86-92.	12.7	54

#	Article	IF	Citations
19	Retention of mercury by low-cost sorbents: Influence of flue gas composition and fly ash occurrence. Chemical Engineering Journal, 2012, 213, 16-21.	12.7	49
20	Influence of a CO2-enriched flue gas on mercury capture by activated carbons. Chemical Engineering Journal, 2015, 262, 1237-1243.	12.7	47
21	Retention of Elemental Mercury in Fly Ashes in Different Atmospheres. Energy & 2007, 21, 99-103.	5.1	46
22	Effect of Oxy-Combustion Flue Gas on Mercury Oxidation. Environmental Science & Emp; Technology, 2014, 48, 7164-7170.	10.0	46
23	A comparison of devices using thermal desorption for mercury speciation in solids. Talanta, 2016, 150, 272-277.	5.5	46
24	Mercury oxidation in catalysts used for selective reduction of NO x (SCR) in oxy-fuel combustion. Chemical Engineering Journal, 2016, 285, 77-82.	12.7	45
25	Mercury Retention by Fly Ashes from Coal Combustion:Â Influence of the Unburned Carbon Content. Industrial & Engineering Chemistry Research, 2007, 46, 927-931.	3.7	42
26	Analytical methods for mercury analysis in coal and coal combustion by-products. International Journal of Coal Geology, 2012, 94, 44-53.	5.0	41
27	Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems. Fuel, 2015, 148, 98-103.	6.4	41
28	The retention capacity for trace elements by the flue gas desulphurisation system under operational conditions of a co-combustion power plant. Fuel, 2012, 102, 773-788.	6.4	40
29	Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion. Journal of Environmental Management, 2012, 98, 23-28.	7.8	38
30	Lead isotope ratios in Spanish coals of different characteristics and origin. International Journal of Coal Geology, 2007, 71, 28-36.	5.0	37
31	Differential partitioning and speciation of Hg in wet FGD facilities of two Spanish PCC power plants. Chemosphere, 2011, 85, 565-570.	8.2	37
32	Development of Gold Nanoparticle-Doped Activated Carbon Sorbent for Elemental Mercury. Energy & Energy	5.1	35
33	Study of mercury in by-products from a Dutch co-combustion power station. Journal of Hazardous Materials, 2010, 174, 28-33.	12.4	32
34	Activated carbons from biocollagenic wastes of the leather industry for mercury capture in oxy-combustion. Fuel, 2015, 142, 227-234.	6.4	32
35	Mercury Retention by Fly Ashes from Oxy-fuel Processes. Energy & Samp; Fuels, 2015, 29, 2227-2233.	5.1	30
36	Retention of Arsenic and Selenium during Hot Gas Desulfurization Using Metal Oxide Sorbents. Energy &	5.1	29

#	Article	IF	CITATIONS
37	Mercury and selenium retention in fly ashes: Influence of unburned particle content. Fuel, 2007, 86, 2064-2070.	6.4	28
38	Effect of adding aluminum salts to wet FGD systems upon the stabilization of mercury. Fuel, 2012, 96, 568-571.	6.4	28
39	Oxidised mercury determination from combustion gases using an ionic exchanger. Fuel, 2014, 122, 218-222.	6.4	27
40	Influence of iron species present in fly ashes on mercury retention and oxidation. Fuel, 2011, 90, 2808-2811.	6.4	24
41	Noble metal-based sorbents: A way to avoid new waste after mercury removal. Journal of Hazardous Materials, 2020, 400, 123168.	12.4	22
42	Impact of a semi-industrial coke processing plant in the surrounding surface soil. Part II: PAH content. Fuel Processing Technology, 2012, 104, 245-252.	7.2	21
43	Distribution of Trace Elements from a Coal Burned in Two Different Spanish Power Stations. Industrial & Distribution of Trace Elements from a Coal Burned in Two Different Spanish Power Stations.	3.7	20
44	Carbon materials loaded with maghemite as regenerable sorbents for gaseous HgO removal. Chemical Engineering Journal, 2020, 387, 124151.	12.7	20
45	Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes. Energy, 2018, 159, 648-655.	8.8	19
46	Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel, 2006, 85, 1389-1395.	6.4	18
47	The application of regenerable sorbents for mercury capture in gas phase. Environmental Science and Pollution Research, 2016, 23, 24495-24503.	5.3	18
48	A New Approach for Retaining Mercury in Energy Generation Processes: Regenerable Carbonaceous Sorbents. Energies, 2017, 10, 1311.	3.1	18
49	Study of Mercury Adsorption by Low-Cost Sorbents Using Kinetic Modeling. Industrial & Samp; Engineering Chemistry Research, 2015, 54, 5572-5579.	3.7	17
50	Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: Effect of water. Chemosphere, 2015, 125, 191-197.	8.2	17
51	Determination of selenium by ICP-MS and HG-ICP-MS in coal, fly ashes and sorbents used for flue gas cleaning. Fuel, 2004, 83, 231-235.	6.4	16
52	A candidate material for mercury control in energy production processes: Carbon foams loaded with gold. Energy, 2018, 159, 630-637.	8.8	16
53	The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere. Journal of Hazardous Materials, 2010, 173, 450-454.	12.4	14
54	Speciation of Hg retained in gasification biomass chars by temperature-programmed decomposition. Fuel Processing Technology, 2014, 126, 1-4.	7.2	13

#	Article	IF	CITATIONS
55	Enrichment of thallium in fly ashes in a Spanish circulating fluidized-bed combustion plant. Fuel, 2015, 146, 51-55.	6.4	13
56	Effectiveness of amino-functionalized sorbents for co2 capture in the presence of Hg. Fuel, 2020, 267, 117250.	6.4	13
57	Impact of Oxy-Fuel Conditions on Elemental Mercury Re-Emission in Wet Flue Gas Desulfurization Systems. Environmental Science & Environmental Science	10.0	12
58	Impact of a semi-industrial coke processing plant in the surrounding surface soil. Fuel Processing Technology, 2012, 102, 35-45.	7.2	11
59	Assessment of mercury pollution sources in beach sand and coastal soil by speciation analysis. Environmental Sciences Europe, 2019, 31, .	5.5	11
60	Lead isotope ratios in a soil from a coal carbonization plant. Fuel, 2007, 86, 1079-1085.	6.4	10
61	Geochemical speciation of mercury in bauxite. Applied Geochemistry, 2018, 93, 30-35.	3.0	9
62	Avoiding Mercury Emissions by Combustion in a Spanish Circulating Fluidized-Bed Combustion (CFBC) Plant. Energy & Spanish Circulating Fluidized-Bed Combustion (CFBC)	5.1	8
63	Mercury adsorption in the gas phase by regenerable Au-loaded activated carbon foams: a kinetic and reaction mechanism study. New Journal of Chemistry, 2020, 44, 12009-12018.	2.8	8
64	Study of boron behaviour in two spanish coal combustion power plants. Journal of Environmental Management, 2011, 92, 2586-2589.	7.8	7
65	Effect of Hg on CO2 capture by solid sorbents in the presence of acid gases. Chemical Engineering Journal, 2017, 312, 367-374.	12.7	7
66	Leaching of major and trace elements from paper–plastic gasification chars: An experimental and modelling study. Journal of Hazardous Materials, 2013, 244-245, 70-76.	12.4	4
67	Identification of mercury species in minerals with different matrices and impurities by thermal desorption technique. Environmental Science and Pollution Research, 2019, 26, 10867-10874.	5.3	4
68	Evaluation of the Variables that Influence Mercury Capture in Solid Sorbents. Coal Combustion and Gasification Products, 2009, 1, 32-37.	1.0	4
69	Goethite-based carbon foam nanocomposites for concurrently immobilizing arsenic and metals in polluted soils. Chemosphere, 2022, 301, 134645.	8.2	4
70	Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants. Journal of Environmental Monitoring, 2008, 10, 778.	2.1	2
71	Gaseous mercury behaviour in the presence of functionalized styrene–divinylbenzene copolymers. Pure and Applied Chemistry, 2014, 86, 1861-1869.	1.9	2
72	Immobilization of mercury in contaminated soils through the use of new carbon foam amendments. Environmental Sciences Europe, 2021, 33, .	5.5	2

#	Article	IF	CITATIONS
73	Comparison of Mercury Retention by Fly Ashes Using Different Experimental Devices. Industrial & Comparison of Mercury Research, 2009, 48, 10702-10707.	3.7	1
74	A Candidate Material for Mercury Control in Energy Production Processes: Carbon Foams Loaded with Gold. , 0, , .		0
75	Carbon-Based Sorbents Impregnated with Iron Oxides for Removing Mercury in Energy Generation Processes. , 0, , .		O