Soazig Guyomarc'h

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PUCHI represses early meristem formation in developing lateral roots of <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2022, 73, 3496-3510.	4.8	11
2	AP2/ERF transcription factors orchestrate very long chain fatty acid biosynthesis during Arabidopsis lateral root development. Molecular Plant, 2021, 14, 205-207.	8.3	11
3	Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit. Trends in Plant Science, 2019, 24, 826-839.	8.8	109
4	PUCHI regulates very long chain fatty acid biosynthesis during lateral root and callus formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14325-14330.	7.1	46
5	A New Phenotyping Pipeline Reveals Three Types of Lateral Roots and a Random Branching Pattern in Two Cereals. Plant Physiology, 2018, 177, 896-910.	4.8	27
6	Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots. Frontiers in Plant Science, 2016, 7, 829.	3.6	79
7	Quiescent center initiation in the <i>Arabidopsis</i> lateral root primordia is dependent on the <i>SCARECROW</i> transcription factor. Development (Cambridge), 2016, 143, 3363-71.	2.5	61
8	PIN Transcriptional Regulation Shapes Root System Architecture. Trends in Plant Science, 2016, 21, 175-177.	8.8	18
9	Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	1
10	Inference of the Arabidopsis Lateral Root Gene Regulatory Network Suggests a Bifurcation Mechanism That Defines Primordia Flanking and Central Zones. Plant Cell, 2015, 27, 1368-1388.	6.6	105
11	A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nature Communications, 2015, 6, 6043.	12.8	130
12	The Dicot Root as a Model System for Studying Organogenesis. Methods in Molecular Biology, 2013, 959, 45-67.	0.9	4
13	Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science, 2013, 18, 450-458.	8.8	536
14	Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5229-5234.	7.1	233
15	Auxin influx carriers stabilize phyllotactic patterning. Genes and Development, 2008, 22, 810-823.	5.9	248
16	MGOUN3: evidence for chromatin-mediated regulation of FLC expression. Journal of Experimental Botany, 2006, 57, 2111-2119.	4.8	16
17	A plausible model of phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1301-1306.	7.1	554
18	Regulation of meristem activity by chromatin remodelling. Trends in Plant Science, 2005, 10, 332-338.	8.8	38

#	Article	IF	CITATIONS
19	MGOUN3, an Arabidopsis gene with TetratricoPeptide-Repeat-related motifs, regulates meristem cellular organization. Journal of Experimental Botany, 2004, 55, 673-684.	4.8	52