Niamh Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072705/publications.pdf Version: 2024-02-01

NIAMH BUCKLEY

#	Article	IF	CITATIONS
1	Activation of a cGAS-STING-mediated immune response predicts response to neoadjuvant chemotherapy in early breast cancer. British Journal of Cancer, 2022, 126, 247-258.	2.9	14
2	Trastuzumab cardiotoxicity in HER2-positive breast cancer patients in tertiary health care center, sultanate of Oman. Journal of Oncology Pharmacy Practice, 2021, 27, 312-321.	0.5	4
3	Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. Journal of Controlled Release, 2021, 330, 1288-1299.	4.8	40
4	Exploiting the anticancer effects of a nitrogen bisphosphonate nanomedicine for glioblastoma multiforme. Journal of Nanobiotechnology, 2021, 19, 127.	4.2	5
5	The clinical and molecular significance associated with STING signaling in breast cancer. Npj Breast Cancer, 2021, 7, 81.	2.3	21
6	Pin1 plays a key role in the response to treatment and clinical outcome in triple negative breast cancer. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592090604.	1.4	5
7	Glucocorticoid Receptor Expression Predicts Good Outcome in response to Taxane-Free, Anthracycline-Based Therapy in Triple Negative Breast Cancer. Journal of Oncology, 2020, 2020, 1-10.	0.6	7
8	Investigating Radiotherapy Response in a Novel Syngeneic Model of Prostate Cancer. Cancers, 2020, 12, 2804.	1.7	8
9	A Novel Role for Cathepsin S as a Potential Biomarker in Triple Negative Breast Cancer. Journal of Oncology, 2019, 2019, 1-12.	0.6	16
10	TBX2 interacts with heterochromatin protein 1 to recruit a novel repression complex to EGR1-targeted promoters to drive the proliferation of breast cancer cells. Oncogene, 2019, 38, 5971-5986.	2.6	38
11	Defining the molecular evolution of extrauterine high grade serous carcinoma. Gynecologic Oncology, 2019, 155, 305-317.	0.6	17
12	PDLIM2 Is a Marker of Adhesion and Î ² -Catenin Activity in Triple-Negative Breast Cancer. Cancer Research, 2019, 79, 2619-2633.	0.4	14
13	NUP98 – a novel predictor of response to anthracycline-based chemotherapy in triple negative breast cancer. BMC Cancer, 2019, 19, 236.	1.1	11
14	Exploring the Potential of MicroRNA Let-7c as a Therapeutic for Prostate Cancer. Molecular Therapy - Nucleic Acids, 2019, 18, 927-937.	2.3	16
15	Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good Outcome in ER-/HER2+ Breast Cancer. Journal of Oncology, 2018, 2018, 1-14.	0.6	44
16	Dual Mechanisms of LYN Kinase Dysregulation Drive Aggressive Behavior in Breast Cancer Cells. Cell Reports, 2018, 25, 3674-3692.e10.	2.9	43
17	Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer. Journal of the National Cancer Institute, 2017, 109, djw199.	3.0	338
18	Abstract 347: The role of Pin1 in chemosensitivity of BRCA1-deficient breast cancers. , 2017, , .		0

NIAMH BUCKLEY

#	Article	IF	CITATIONS
19	Quantification of HER2 heterogeneity in breast cancer–implications for identification of sub-dominant clones for personalised treatment. Scientific Reports, 2016, 6, 23383.	1.6	38
20	Novel prognostic biomarkers in high grade serous carcinoma of the pelvis: review of current markers and an introduction to the potassium channel gene KCNK1 as a new biomarker. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2016, 206, e28.	0.5	0
21	Abstract 4000: A DNA damage response deficiency (DDRD) group in breast cancer is associated with activation of the STING innate immune pathway and PD-L1 expression. , 2016, , .		1
22	Thromboxane A2 receptor (TBXA2R) is a potent survival factor for triple negative breast cancers (TNBCs). Oncotarget, 2016, 7, 55458-55472.	0.8	19
23	A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. Oncotarget, 2016, 7, 19884-19896.	0.8	30
24	Abstract 2270: A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. , 2016, , .		0
25	Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention. Oncotarget, 2015, 6, 43244-43254.	0.8	8
26	Abstract C105: DNA damage response deficiency (DDRD) in breast cancer is associated with a STINC-dependent innate immune response. , 2015, , .		1
27	S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability. Cell Death and Disease, 2014, 5, e1070-e1070.	2.7	24
28	TBX2 represses CST6 resulting in uncontrolled legumain activity to sustain breast cancer proliferation: a novel cancer-selective target pathway with therapeutic opportunities Oncotarget, 2014, 5, 1609-1620.	0.8	37
29	BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers. Nucleic Acids Research, 2013, 41, 8601-8614.	6.5	44
30	Abstract B051: The identification of the Thromboxane A2 receptor as an oncogenic driver in triple-negative breast cancer. , 2013, , .		0
31	BRCA1 – Conductor of the Breast Stem Cell Orchestra: The Role of BRCA1 in Mammary Gland Development and Identification of Cell of Origin of BRCA1 Mutant Breast Cancer. Stem Cell Reviews and Reports, 2012, 8, 982-993.	5.6	29
32	BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene, 2012, 31, 3667-3678.	2.6	77
33	The ΔNp63 Proteins Are Key Allies of BRCA1 in the Prevention of Basal-Like Breast Cancer. Cancer Research, 2011, 71, 1933-1944.	0.4	35
34	BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Research and Treatment, 2010, 122, 721-731.	1.1	68
35	Osteopontin can act as an effector for a germline mutation of BRCA1 in malignant transformation of breast cancerâ€related cells. Cancer Science, 2010, 101, 1354-1360.	1.7	12
36	T-box 2 represses NDRG1 through an EGR1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene, 2010, 29, 3252-3262.	2.6	57

#	Article	IF	CITATIONS
37	BRCA1 Regulates IFN- \hat{I}^3 Signaling through a Mechanism Involving the Type I IFNs. Molecular Cancer Research, 2007, 5, 261-270.	1.5	44
38	The 2,5 oligoadenylate synthetase/RNaseL pathway is a novel effector of BRCA1- and interferon-1 ³ -mediated apoptosis. Oncogene, 2005, 24, 5492-5501.	2.6	53