
William H Karasov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological Physiology of Diet and Digestive Systems. Annual Review of Physiology, 2011, 73, 69-93.	13.1	256
2	Morphometrics of the Avian Small Intestine Compared with That of Nonflying Mammals: A Phylogenetic Approach. Physiological and Biochemical Zoology, 2008, 81, 526-550.	1.5	248
3	Comparative Digestive Physiology. , 2013, 3, 741-783.		230
4	Digestive physiology is a determinant of foraging bout frequency in hummingbirds. Nature, 1986, 320, 62-63.	27.8	226
5	Food Passage and Intestinal Nutrient Absorption in Hummingbirds. Auk, 1986, 103, 453-464.	1.4	179
6	The Trade-Offs Between Digestion Rate and Efficiency in Warblers and Their Ecological Implications. Ecology, 1995, 76, 2247-2257.	3.2	177
7	Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 128, 577-591.	1.8	171
8	Interplay between Physiology and Ecology in Digestion. BioScience, 1988, 38, 602-611.	4.9	155
9	Restructuring of the amphibian gut microbiota through metamorphosis. Environmental Microbiology Reports, 2013, 5, 899-903.	2.4	148
10	The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates for smaller guts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19132-19137.	7.1	147
11	Digestive System Trade-offs and Adaptations of Frugivorous Passerine Birds. Physiological Zoology, 1990, 63, 1248-1270.	1.5	135
12	Daily Energy Expenditure and the Cost of Activity in Mammals. American Zoologist, 1992, 32, 238-248.	0.7	106
13	Digestion Strategies in Nectar- and Fruit-Eating Birds and the Sugar Composition of Plant Rewards. American Naturalist, 1990, 136, 618-637.	2.1	105
14	Changes in Gut Structure and Function of House Wrens (Troglodytes aedon) in Response to Increased Energy Demands. Physiological Zoology, 1992, 65, 422-442.	1.5	101
15	Energetics of the Lizard Cnemidophorus Tigris and Life History Consequences of Foodâ€Acquisition Mode. Ecological Monographs, 1988, 58, 79-110.	5.4	97
16	Anatomical and Histological Changes in the Alimentary Tract of Migrating Blackcaps (Sylvia) Tj ETQq0 0 0 rgBT / Biochemical Zoology, 2004, 77, 149-160.	Overlock 1 1.5	10 Tf 50 147 1 96
17	Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environmental Toxicology and Chemistry, 2001, 20, 769-775.	4.3	92
18	The integration of digestion and osmoregulation in the avian gut. Biological Reviews, 2009, 84, 533-565.	10.4	91

2

#	Article	IF	CITATIONS
19	Sublethal Parasites and Host Energy Budgets: Tapeworm Infection in White-Footed Mice. Ecology, 1989, 70, 904-921.	3.2	89
20	Nutritional Costs of a Plant Secondary Metabolite Explain Selective Foraging by Ruffed Grouse. Ecology, 1996, 77, 1103-1115.	3.2	89
21	Effects of atrazine and nitrate on northern leopard frog (<i>Rana pipiens</i>) larvae exposed in the laboratory from posthatch through metamorphosis. Environmental Toxicology and Chemistry, 2000, 19, 2850-2855.	4.3	89
22	Daily energy expenditure and the cost of activity in a free-living mammal. Oecologia, 1981, 51, 253-259.	2.0	81
23	Latitudinal Trends in Digestive Flexibility: Testing the Climatic Variability Hypothesis with Data on the Intestinal Length of Rodents. American Naturalist, 2008, 172, E122-E134.	2.1	77
24	Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus): testing an adaptive hypothesis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 125, 11-24.	1.8	76
25	How do food passage rate and assimilation differ between herbivorous lizards and nonruminant mammals?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1986, 156, 599-609.	1.5	75
26	Interhabitat Differences in Energy Acquisition and Expenditure in a Lizard. Ecology, 1984, 65, 235-247.	3.2	74
27	Digestive Adaptations of Aerial Lifestyles. Physiology, 2015, 30, 69-78.	3.1	66
28	Test for Physiological Limitation to Nutrient Assimilation in a Longâ€Distance Passerine Migrant at a Springtime Stopover Site. Physiological and Biochemical Zoology, 2000, 73, 335-343.	1.5	65
29	Antiherbivore Chemistry of Larrea Tridentata: Effects on Woodrat (Neotoma Lepida) Feeding and Nutrition. Ecology, 1989, 70, 953-961.	3.2	62
30	Gut Passage of Insects by European Starlings and Comparison with Other Species. Auk, 1994, 111, 478-481.	1.4	62
31	Direct effect of ammonia on three species of north american anuran amphibians. Environmental Toxicology and Chemistry, 1999, 18, 1806-1812.	4.3	60
32	Paracellular Absorption: A Bat Breaks the Mammal Paradigm. PLoS ONE, 2008, 3, e1425.	2.5	60
33	Effects of methyl mercury exposure on the growth of juvenile common loons. Ecotoxicology, 2003, 12, 171-181.	2.4	59
34	Developmental Changes in Digestive Physiology of Nestling House Sparrows, Passer domesticus. Physiological and Biochemical Zoology, 2001, 74, 769-782.	1.5	58
35	Diet preferences of warblers for specific fatty acids in relation to nutritional requirements and digestive capabilities. Journal of Avian Biology, 2002, 33, 167-174.	1.2	56
36	Do Salivary Proline-Rich Proteins Counteract Dietary Hydrolyzable Tannin in Laboratory Rats?. Journal of Chemical Ecology, 2004, 30, 1679-1692.	1.8	53

#	Article	IF	CITATIONS
37	Developmental adjustments of house sparrow (<i>Passer domesticus</i>)nestlings to diet composition. Journal of Experimental Biology, 2009, 212, 1284-1293.	1.7	51
38	Intraspecific Directed Deterrence by the Mustard Oil Bomb in a Desert Plant. Current Biology, 2012, 22, 1218-1220.	3.9	51
39	A Test for Passive Absorption of Glucose in Yellow-Rumped Warblers and Its Ecological Implications. Physiological Zoology, 1997, 70, 370-377.	1.5	51
40	Absorption of sugars in the Egyptian fruit bat (Rousettus aegyptiacus): a paradox explained. Journal of Experimental Biology, 2007, 210, 1726-1734.	1.7	49
41	Energy Assimilation, Nitrogen Requirement, and Diet in Free-Living Antelope Ground Squirrels Ammospermophilus leucurus. Physiological Zoology, 1982, 55, 378-392.	1.5	49
42	EFFECTS OF ATRAZINE AND NITRATE ON NORTHERN LEOPARD FROG (RANA PIPIENS) LARVAE EXPOSED IN THE LABORATORY FROM POSTHATCH THROUGH METAMORPHOSIS. Environmental Toxicology and Chemistry, 2000, 19, 2850.	4.3	49
43	INTERPOPULATION DIFFERENCES IN TOLERANCE TO CREOSOTE BUSH RESIN IN DESERT WOODRATS (NEOTOMA LEPIDA). Ecology, 2000, 81, 2067-2076.	3.2	47
44	Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism. Biology Letters, 2006, 2, 131-134.	2.3	47
45	Nutrition and health in amphibian husbandry. Zoo Biology, 2014, 33, 485-501.	1.2	47
46	Nutritional Bottleneck in a Herbivore, the Desert Wood Rat (Neotoma lepida). Physiological Zoology, 1989, 62, 1351-1382.	1.5	46
47	Arboreal Folivores Limit Their Energetic Output, All the Way to Slothfulness. American Naturalist, 2016, 188, 196-204.	2.1	45
48	Sublethal parasites in white-footed mice: impact on survival and reproduction. Canadian Journal of Zoology, 1991, 69, 398-404.	1.0	43
49	Costs of bot fly infection in white-footed mice: energy and mass flow. Canadian Journal of Zoology, 1994, 72, 166-173.	1.0	42
50	Effect of Ephemeral Food Restriction on Growth of House Sparrows. Auk, 2000, 117, 164-174.	1.4	42
51	Larval exposure to polychlorinated biphenyl 126 (PCBâ€126) causes persistent alteration of the amphibian gut microbiota. Environmental Toxicology and Chemistry, 2015, 34, 1113-1118.	4.3	42
52	Gut microbes limit growth in house sparrow nestlings (<i>Passer domesticus</i>) but not through limitations in digestive capacity. Integrative Zoology, 2018, 13, 139-151.	2.6	42
53	Digestive adjustments in cedar waxwings to high feeding rate. The Journal of Experimental Zoology, 1999, 283, 394-407.	1.4	41
54	2,4-Dichlorophenoxyacetic acid containing herbicide impairs essential visually guided behaviors of larval fish. Aquatic Toxicology, 2019, 209, 1-12.	4.0	41

#	Article	IF	CITATIONS
55	Reproductive success, developmental anomalies, and environmental contaminants in doubleâ€crested cormorants (<i>Phalacrocorax auritus</i>). Environmental Toxicology and Chemistry, 1996, 15, 553-559.	4.3	39
56	Low Reproductive Rates of Lake Superior Bald Eagles: Low Food Delivery Rates or Environmental Contaminants?. Journal of Great Lakes Research, 1998, 24, 32-44.	1.9	39
57	Ageâ€related changes in the gut microbiota of wild House Sparrow nestlings. Ibis, 2019, 161, 184-191.	1.9	39
58	Wintertime Energy Conservation by Huddling in Antelope Ground Squirrels (Ammospermophilus) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
59	Plant Secondary Compounds as Diuretics: An Overlooked Consequence1. American Zoologist, 2001, 41, 890-901.	0.7	38
60	Integrative physiology of transcellular and paracellular intestinal absorption. Journal of Experimental Biology, 2017, 220, 2495-2501.	1.7	38
61	How the house sparrow Passer domesticus absorbs glucose. Journal of Experimental Biology, 2004, 207, 3109-3121.	1.7	36
62	Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140308.	2.6	36
63	Test of a Reactor-Based Digestion Optimization Model for Nectar-Eating Rainbow Lorikeets. Physiological Zoology, 1996, 69, 117-138.	1.5	36
64	Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2011, 181, 125-135.	1.5	35
65	Cost of locomotion and daily energy expenditure by free-living swift foxes (<i>Vulpes velox</i>): a seasonal comparison. Canadian Journal of Zoology, 1996, 74, 283-290.	1.0	34
66	Is Diet Shifting Facilitated by Modulation of Intestinal Nutrient Uptake? Test of an Adaptational Hypothesis in Yellow-Rumped Warblers. Physiological Zoology, 1997, 70, 213-221.	1.5	34
67	Field exposure of frog embryos and tadpoles along a pollution gradient in the Fox River and Green Bay ecosystem in Wisconsin, USA. Environmental Toxicology and Chemistry, 2005, 24, 942-953.	4.3	34
68	Mechanistic bases for differences in passive absorption. Journal of Experimental Biology, 2007, 210, 2754-2764.	1.7	34
69	Immunohistochemical localization of cytochrome P4501A induced by 3,3′,4,4′,5â€pentachlorobiphenyl (P Chemistry, 2001, 20, 191-197.	CB) Tj ETQ 4.3	q1 1 0.784 <mark>3</mark> 1 33
70	EFFECTS OF ATRAZINE ON EMBRYOS, LARVAE, AND ADULTS OF ANURAN AMPHIBIANS. Environmental Toxicology and Chemistry, 2001, 20, 769.	4.3	33
71	Flavonoids Have Differential Effects on Glucose Absorption in Rats (Rattus norvegicus) and American Robins (Turdis migratorius). Journal of Chemical Ecology, 2010, 36, 236-243.	1.8	32

Gut physiology: Trophic control of the intestinal mucosa. Nature, 1983, 304, 18-18.

27.8 31

#	Article	IF	CITATIONS
73	Tannic acid inhibition of amino acid and sugar absorption by mouse and vole intestine: Tests following acute and subchronic exposure. Journal of Chemical Ecology, 1992, 18, 719-736.	1.8	31
74	Ontogenetic patterns of constitutive immune parameters in altricial house sparrows. Journal of Avian Biology, 2013, 44, 513-520.	1.2	31
75	Intestinal Nutrient Uptake Measurements and Tissue Damage: Validating the Everted Sleeves Method. Physiological and Biochemical Zoology, 2000, 73, 454-460.	1.5	30
76	Creosote Bush (Larrea tridentata) Resin Increases Water Demands and Reduces Energy Availability in Desert Woodrats (Neotoma lepida). Journal of Chemical Ecology, 2004, 30, 1409-1429.	1.8	30
77	Nutrient constraints in the feeding ecology of an omnivore in a seasonal environment. Oecologia, 1985, 66, 280-290.	2.0	29
78	Coniferyl Benzoate in Quaking Aspen (Populus tremuloides): Its Effect on Energy and Nitrogen Digestion and Retention in Ruffed Grouse (Bonasa umbellus). Physiological Zoology, 1993, 66, 580-601.	1.5	29
79	Impact of 2,3,7,8â€TCDD exposure on survival, growth, and behavior of ospreys breeding in Wisconsin, USA. Environmental Toxicology and Chemistry, 1998, 17, 1323-1331.	4.3	29
80	Detoxification in relation to toxin tolerance in desert woodrats eating creosote bush. Journal of Chemical Ecology, 2001, 27, 2559-2578.	1.8	29
81	Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): bioaccumulation and reduced swimming performance. Ecotoxicology, 2009, 18, 587-593.	2.4	28
82	Ruffed Grouse Tolerance and Biotransformation of the Plant Secondary Metabolite Coniferyl Benzoate. Condor, 1993, 95, 625-640.	1.6	27
83	Pancreatic and Intestinal Carbohydrases Are Matched to Dietary Starch Level in Wild Passerine Birds. Physiological and Biochemical Zoology, 2011, 84, 195-203.	1.5	27
84	Ecological implications of reduced forage quality on growth and survival of sympatric geese. Journal of Animal Ecology, 2015, 84, 284-298.	2.8	27
85	Digestive Response to Restricted Feeding in Migratory Yellowâ€Rumped Warblers. Physiological and Biochemical Zoology, 2002, 75, 314-323.	1.5	26
86	Ingestion of plant secondary compounds causes diuresis in desert herbivores. Oecologia, 2002, 130, 576-584.	2.0	26
87	Seasonal Field Metabolic Rates of American Martens in Wisconsin. American Midland Naturalist, 2009, 162, 327-334.	0.4	26
88	Chickadees Faced with Unpredictable Food Increase Fat Reserves but Certain Components of Their Immune Function Decline. Physiological and Biochemical Zoology, 2017, 90, 190-200.	1.5	26
89	Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. Journal of Experimental Biology, 2012, 215, 1806-1815.	1.7	25
90	Does habitat fragmentation promote climateâ€resilient phenotypes?. Oikos, 2018, 127, 1069-1080.	2.7	25

#	Article	IF	CITATIONS
91	Effects of low, subchronic exposure of 2,4â€Dichlorophenoxyacetic acid (2,4â€D) and commercial 2,4â€D formulations on early life stages of fathead minnows (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2018, 37, 2550-2559.	4.3	25
92	Water Flux and Water Requirement in Free-living Antelope Ground Squirrels Ammospermophilus leucurus. Physiological Zoology, 1983, 56, 94-105.	1.5	24
93	Low plasticity in digestive physiology constrains feeding ecology in diet specialist, zebra finch (<i>Taeniopygia guttata</i>). Journal of Experimental Biology, 2010, 213, 798-807.	1.7	23
94	Impacts of 2,4â€dichlorophenoxyacetic acid aquatic herbicide formulations on reproduction and development of the fathead minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2016, 35, 1478-1488.	4.3	23
95	Nesting Energetics of House Wrens (Troglodytes aedon) in Relation to Maximal Rates of Energy Flow. Auk, 1993, 110, 481-491.	1.4	22
96	Drinking water boosts food intake rate, body mass increase and fat accumulation in migratory blackcaps (Sylvia atricapilla). Oecologia, 2008, 156, 21-30.	2.0	22
97	Begging and digestive responses to differences in long-term and short-term need in nestling pied flycatchers. Animal Behaviour, 2010, 80, 517-525.	1.9	22
98	Chronic, dietary polybrominated diphenyl ether exposure affects survival, growth, and development of <i>Rana pipiens</i> tadpoles. Environmental Toxicology and Chemistry, 2010, 29, 133-141.	4.3	22
99	Digestive physiology: a view from molecules to ecosystem. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R276-R284.	1.8	22
100	Capacity for Absorption of Water-Soluble Secondary Metabolites Greater in Birds than in Rodents. PLoS ONE, 2012, 7, e32417.	2.5	22
101	Fully reversible phenotypic plasticity of digestive physiology in young house sparrows: lack of long-term effect of early diet composition. Journal of Experimental Biology, 2011, 214, 2755-2760.	1.7	21
102	Immunomodulation in Post-metamorphic Northern Leopard Frogs, <i>Lithobates pipiens</i> , Following Larval Exposure to Polybrominated Diphenyl Ether. Environmental Science & Technology, 2014, 48, 5910-5919.	10.0	21
103	INDUCTION OF CYTOCHROME P450-ASSOCIATED MONOOXYGENASES IN NORTHERN LEOPARD FROGS, RANA PIPIENS, BY $3,3\hat{a}\in^2,4,4\hat{a}\in^2,5$ -PENTACHLOROBIPHENYL. Environmental Toxicology and Chemistry, 1998, 17, 1564.	4.3	20
104	EXPOSURE OF NORTHERN LEOPARD FROGS IN THE GREEN BAY ECOSYSTEM TO POLYCHLORINATED BIPHENYLS, POLYCHLORINATED DIBENZO-P-DIOXINS, AND POLYCHLORINATED DIBENZOFURANS IS MEASURED BY DIRECT CHEMISTRY BUT NOT HEPATIC ETHOXYRESORUFIN-O-DEETHYLASE ACTIVITY. Environmental Toxicology and Chemistry, 1999, 18, 2123.	4.3	20
105	Induction of cytochrome P450â€associated monooxygenases in northern leopard frogs, <i>Rana pipiens</i> , by 3,3′,4,4′,5â€Pentachlorobiphenyl. Environmental Toxicology and Chemistry, 1998, 17, 1564-1569.	4.3	19
106	Interspecific and Postmetamorphic Variation in Susceptibility of Three North American Anurans to <i>Batrachochytrium dendrobatidis</i> . Journal of Herpetology, 2013, 47, 286-292.	0.5	19
107	Metabolic Teamwork between Gut Microbes and Hosts. Microbe Magazine, 2009, 4, 323-328.	0.4	19
108	Digestion of Chitin by Northern Bobwhites and American Robins. Condor, 1997, 99, 554-556.	1.6	18

#	Article	IF	CITATIONS
109	Warmer temperature modifies effects of polybrominated diphenyl ethers on hormone profiles in leopard frog tadpoles (<i>Lithobates pipiens</i>). Environmental Toxicology and Chemistry, 2017, 36, 120-127.	4.3	18
110	Nestling Digestive Physiology and Begging. , 2002, , 199-219.		18
111	Daily Energy and Expenditure by Black-Capped Chickadees (Parus atricapillus) in Winter. Auk, 1992, 109, 393-395.	1.4	17
112	Daily Energy Expenditure by Nestling House Wrens. Condor, 1993, 95, 1028-1030.	1.6	17
113	Allometry of Paracellular Absorption in Birds. Physiological and Biochemical Zoology, 2008, 81, 551-560.	1.5	17
114	Assessment of Radiolabeleddâ€Glucose and the Nonmetabolizable Analog 3â€Oâ€Methylâ€dâ€Glucose as Tools for In Vivo Absorption Studies. Physiological and Biochemical Zoology, 2010, 83, 376-384.	1.5	17
115	Modulation of digestive enzyme activities in the avian digestive tract in relation to diet composition and quality. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 339-351.	1.5	17
116	NMR-Based Identification of Metabolites in Polar and Non-Polar Extracts of Avian Liver. Metabolites, 2017, 7, 61.	2.9	17
117	Test of a digestion optimization model: effect of variable-reward feeding schedules on digestive performance of a migratory bird. Oecologia, 1998, 114, 160-169.	2.0	16
118	A new method to measure intestinal activity of P-glycoprotein in avian and mammalian species. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 57-66.	1.5	16
119	Electroaffinity in paracellular absorption of hydrophilic d-dipeptides by sparrow intestine. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 303-309.	1.5	16
120	Effect of mono-ortho and di-ortho substituted polychlorinated biphenyl (PCB) congeners on leopard frog survival and sexual development. Chemosphere, 2008, 70, 1609-1619.	8.2	16
121	Oral and Parenteral Immunization of Chickens (Gallus gallus) Against West Nile Virus with Recombinant Envelope Protein. Avian Diseases, 2009, 53, 502-509.	1.0	16
122	Adaptation of intestinal epithelial hydrolysis and absorption of dietary carbohydrate and protein in mammals and birds. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 253, 110860.	1.8	16
123	Impacts of Short-Term Food Restriction on Immune Development in Altricial House Sparrow Nestlings. Physiological and Biochemical Zoology, 2015, 88, 195-207.	1.5	15
124	Paracellular nutrient absorption in a gum-feeding new world primate, the common marmosetCallithrix jacchus. American Journal of Primatology, 2007, 69, 1399-1411.	1.7	14
125	Nonâ€invasive measurement of metabolic rates in wild, freeâ€living birds using doubly labelled water. Functional Ecology, 2019, 33, 162-174.	3.6	14
126	Impacts of subchronic exposure to a commercial 2,4-D herbicide on developmental stages of multiple freshwater fish species. Chemosphere, 2021, 263, 127638.	8.2	14

#	Article	IF	CITATIONS
127	Absorption and paracellular visualization of fluorescein, a hydrosoluble probe, in intact house sparrows (Passer domesticus). Zoology, 2004, 107, 121-133.	1.2	13
128	Effects of chronic polybrominated diphenyl ether exposure on gonadal development in the northern leopard frog, <i>Rana pipiens</i> . Environmental Toxicology and Chemistry, 2012, 31, 347-354.	4.3	13
129	Effect of age and diet composition on activity of pancreatic enzymes in birds. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 685-697.	1.5	13
130	Intestinal digestive enzyme modulation in house sparrow nestlings occurs within 24 hours of a change in diet composition. Journal of Experimental Biology, 2017, 220, 2733-2742.	1.7	13
131	Sodium balance in ruffed grouse as influenced by sodium levels and plant secondary metabolites in quaking aspen. Canadian Journal of Zoology, 1995, 73, 1106-1114.	1.0	12
132	Effects of subcutaneous transmitter implants on behavior, growth, energetics, and survival of Common Loon chicks. Journal of Field Ornithology, 2003, 74, 179-186.	0.5	12
133	The capacity for paracellular absorption in the insectivorous bat Tadarida brasiliensis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 289-296.	1.5	12
134	Paracellular nutrient absorption is higher in bats than rodents: integrating from intact animals to the molecular level. Journal of Experimental Biology, 2014, 217, 3483-92.	1.7	12
135	Validation of the Doubly Labeled Water Method in Bald Eagles (<i>Haliaeetus leucocephalus</i>) and a Comparison of Two Equations for the Calculation of Energy Expenditure. Physiological Zoology, 1997, 70, 19-26.	1.5	12
136	Daily Energy Expenditures of Free-Ranging Common Loon (Gavia immer) Chicks. Auk, 2002, 119, 1121-1126.	1.4	11
137	BIOENERGETIC AND PHARMACOKINETIC MODEL FOR EXPOSURE OF COMMON LOON (GAVIA IMMER) CHICKS TO METHYLMERCURY. Environmental Toxicology and Chemistry, 2007, 26, 677.	4.3	11
138	Cold exposure increases intestinal paracellular permeability to nutrients in the mouse. Journal of Experimental Biology, 2013, 216, 4065-70.	1.7	11
139	High paracellular nutrient absorption in intact bats is associated with high paracellular permeability in perfused intestinal segments. Journal of Experimental Biology, 2014, 217, 3311-7.	1.7	11
140	Intestinal paracellular absorption is necessary to support the sugar oxidation cascade in nectarivorous bats. Journal of Experimental Biology, 2016, 219, 779-782.	1.7	11
141	Duplications and Functional Convergence of Intestinal Carbohydrate-Digesting Enzymes. Molecular Biology and Evolution, 2020, 37, 1657-1666.	8.9	11
142	Oral bioavailability and toxicokinetics of 3,3′,4,4′,5â€pentachlorobiphenyl in northern leopard frogs, <i>Rana pipiens</i> . Environmental Toxicology and Chemistry, 2000, 19, 1788-1794.	4.3	10
143	Daily Energy Expenditures of Free-Ranging Common Loon (Gavia immer) Chicks. Auk, 2002, 119, 1121.	1.4	10
144	Physiological and behavioural effects of fruit toxins on seed-predating versus seed-dispersing congeneric rodents. Journal of Experimental Biology, 2013, 216, 3667-73.	1.7	10

5

#	Article	IF	CITATIONS
145	Compensatory growth in nestling Zebra Finches impacts body composition but not adaptive immune function. Auk, 2014, 131, 396-406.	1.4	10
146	Physiological and behavioral effects of coniferyl benzoate on avian reproduction. Journal of Chemical Ecology, 1993, 19, 2353-2377.	1.8	9
147	Is Diet-shifting Facilitated by Modulation of Pancreatic Enzymes? Test of an Adaptational Hypothesis in Yellow-rumped Warblers. Auk, 2001, 118, 1101-1107.	1.4	9
148	Activity of intestinal carbohydrases responds to multiple dietary signals in nestling House sparrows. Journal of Experimental Biology, 2013, 216, 3981-7.	1.7	8
149	Effects of Fruit Toxins on Intestinal and Microbial β-Glucosidase Activities of Seed-Predating and Seed-Dispersing Rodents (<i>Acomys</i> spp.). Physiological and Biochemical Zoology, 2016, 89, 198-205.	1.5	8
150	Physiological and Immune Responses of Free-Living Temperate Birds Provided a Gradient of Food Supplementation. Physiological and Biochemical Zoology, 2019, 92, 106-114.	1.5	8
151	Seasonal variation in body composition in an Afrotropical passerine bird: increases in pectoral muscle mass are, unexpectedly, associated with lower thermogenic capacity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 371-380.	1.5	8
152	A Fast and Accurate Method to Identify and Quantify Enzymes in Brush-Border Membranes: In Situ Hydrolysis Followed by Nano LC-MS/MS. Methods and Protocols, 2020, 3, 15.	2.0	8
153	Friend or foe? Disparate plant–animal interactions of two congeneric rodents. Evolutionary Ecology, 2013, 27, 1069-1080.	1.2	7
154	DIRECT EFFECT OF AMMONIA ON THREE SPECIES OF NORTH AMERICAN ANURAN AMPHIBIANS. Environmental Toxicology and Chemistry, 1999, 18, 1806.	4.3	7
155	Metabolism during winter in a subtropical hibernating bat, the Formosan leaf-nosed bat (<i>Hipposideros terasensis</i>). Journal of Mammalogy, 2012, 93, 220-228.	1.3	6
156	Ontogenetic changes in innate immune function in captive and wild subspecies of prairie hickens (<i>Tympanuchus cupido spp.</i>). Journal of Wildlife Management, 2013, 77, 633-638.	1.8	6
157	Toxicokinetics of polybrominated diphenyl ethers across life stages in the northern leopard frog (<i>Lithobates pipiens</i>). Environmental Toxicology and Chemistry, 2013, 32, 1631-1640.	4.3	6
158	Taste and Physiological Responses to Glucosinolates: Seed Predator versus Seed Disperser. PLoS ONE, 2014, 9, e112505.	2.5	6
159	Effects of Low, Subchronic Exposure of 2,4â€Dichlorophenoxyacetic Acid (2,4â€d) and Commercial 2,4â€d Formulations on Early Life Stages of Fathead Minnows (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2019, 38, 1382-1385.	4.3	6
160	Diet composition modulates intestinal hydrolytic enzymes in white-footed mice (Peromyscus) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 142
161	Effect of Age and Diet on Total and Paracellular Glucose Absorption in Nestling House Sparrows. Physiological and Biochemical Zoology, 2010, 83, 501-511.	1.5	5

¹⁶²Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive
Paracellular Nutrient Absorption. Physiological and Biochemical Zoology, 2015, 88, 680-684.1.5

#	Article	IF	CITATIONS
163	Digestive Efficiency of Northern Leopard Frog (Lithobates pipiens) Tadpoles during Development, Reared on a Laboratory Diet. Herpetologica, 2016, 72, 107-113.	0.4	5
164	Small intestinal epithelial permeability to waterâ€soluble nutrients higher in passerine birds than in rodents. Journal of Animal Physiology and Animal Nutrition, 2018, 102, 1766-1773.	2.2	5
165	Morphological bases for intestinal paracellular absorption in bats and rodents. Journal of Morphology, 2019, 280, 1359-1369.	1.2	5
166	Warmer temperature increases toxicokinetic elimination of PCBs and PBDEs in Northern leopard frog larvae (Lithobates pipiens). Aquatic Toxicology, 2021, 234, 105806.	4.0	5
167	Paracellular Absorption Is Relatively Low in the Herbivorous Egyptian Spiny-Tailed Lizard, Uromastyx aegyptia. PLoS ONE, 2013, 8, e61869.	2.5	5
168	Is Diet-shifting Facilitated by Modulation of Pancreatic Enzymes? Test of an Adaptational Hypothesis in Yellow-rumped Warblers. Auk, 2001, 118, 1101.	1.4	5
169	Effects of subchronic exposure to environmentally relevant concentrations of a commercial fluridone formulation on fathead minnows (Pimephales promelas). Aquatic Toxicology, 2022, 244, 106098.	4.0	5
170	Exposure of northern leopard frogs in the green bay ecosystem to polychlorinated biphenyls, polychlorinated dibenzo—pâ€dioxins, and polychlorinated dibenzofurans is measured by direct chemistry but not hepatic ethoxyresorufin—oâ€deethylase activity. Environmental Toxicology and Chemistry, 1999, 18, 2123-2130.	4.3	4
171	Testing the role of contaminants in depressing avian numbers. Revista Chilena De Historia Natural, 2000, 73, 461.	1.2	4
172	Is alpha-Pinene a Substrate for Permeability-Glycoprotein in Wood Rats?. Journal of Chemical Ecology, 2006, 32, 1197-1211.	1.8	4
173	A Comparison of mucosal surface area and villous histology in small intestines of the <scp>B</scp> razilian freeâ€ŧailed bat (<scp><i>T</i></scp> <i>adarida brasiliensis</i>) and the mouse (<scp><i>M</i></scp> <i>us musculus</i>). Journal of Morphology, 2015, 276, 102-108.	1.2	4
174	Subchronic impacts of 2,4-D herbicide Weedestroy®AM40 on associative learning in juvenile yellow perch (Perca flavescens). Aquatic Toxicology, 2021, 237, 105909.	4.0	4
175	Plant Secondary Compounds as Diuretics: An Overlooked Consequence. American Zoologist, 2001, 41, 890-901.	0.7	3
176	Growth and Energy Requirements of Captive-Reared Common Loon (Gavia Immer) Chicks. Auk, 2007, 124, 1158-1167.	1.4	3
177	Small intestinal hydrolysis of plant glucosides: higher Glucohydrolase activities in rodents than passerine birds. Journal of Experimental Biology, 2015, 218, 2666-9.	1.7	3
178	Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 191, 36-45.	1.6	3
179	Intestinal α –glycosidase transcriptional responses during development and diet adjustment in altricial birds. Journal of Experimental Biology, 2018, 221, .	1.7	3
180	Who pays the bill? The effects of altered brood size on parental and nestling physiology. Journal of Ornithology, 2020, 161, 275-288.	1.1	3

#	Article	IF	CITATIONS
181	Envisioning the future of wildlife in a changing climate: Collaborative learning for adaptation planning. Wildlife Society Bulletin, 2011, 35, 508-513.	1.6	2
182	Dietary adaptation to high starch involves increased relative abundance of sucrase-isomaltase and its mRNA in nestling house sparrows. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R195-R202.	1.8	2
183	The Effects of Dietary Polybrominated Diphenyl Ether Exposure and Rearing Temperature on Tadpole Growth, Development, and Their Underlying Processes. Environmental Toxicology and Chemistry, 2021, 40, 3181-3192.	4.3	2
184	Larval Exposure to Polychlorinated Biphenylâ€126 Led to a Longâ€Lasting Decrease in Immune Function in Postmetamorphic Juvenile Northern Leopard Frogs, <i>Lithobates pipiens</i> . Environmental Toxicology and Chemistry, 2022, 41, 81-94.	4.3	2
185	Daily Energy Expenditure of Nestling Bald Eagles in Northern Wisconsin. Condor, 2001, 103, 175-179.	1.6	1
186	Rapid and parallel changes in activity and mRNA of intestinal peptidase to match altered dietary protein level in juvenile house sparrows (Passer domesticus). Journal of Experimental Biology, 2020, 224, .	1.7	1
187	Gene expression basis for flexibility of intestinal maltase activity in young house sparrows. FASEB Journal, 2010, 24, lb617.	0.5	1
188	Phylogenetic and body size patterns in intestinal paracellular solute absorption. FASEB Journal, 2006, 20, A1275.	0.5	0
189	Paracellular solute absorption varies with body size in primates. FASEB Journal, 2006, 20, A1275.	0.5	0
190	Development and plasticity of innate immune function in altricial house sparrow nestlings. FASEB Journal, 2013, 27, 714.19.	0.5	0
191	Diet Composition Modulates Intestinal Hydrolytic Enzymes in Whiteâ€Footed Mice (Peromyscus) Tj ETQq1 1 0.7	784314 rg 0.5	BT_/Overlock
192	Macronutrient Signals for Adaptive Modulation of Intestinal Digestive Enzymes in Two Omnivorous Galliforms. FASEB Journal, 2022, 36, .	0.5	0