W Gary Allread

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2072351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the effectiveness of static and dynamic insoles in reducing the tibial shock experienced during walking. Applied Ergonomics, 2019, 74, 118-123.	3.1	3
2	Re-thinking floor mat design from an ergonomics perspective: Can a two-part mat system reduce biomechanical loads during normal mat handling tasks?. Applied Ergonomics, 2018, 72, 17-24.	3.1	0
3	An electromyographic and kinematic comparison between an extendable conveyor system and an articulating belt conveyor used for truck loading and unloading tasks. Applied Ergonomics, 2017, 58, 398-404.	3.1	3
4	Panel Discussion In Honor of Dr Tom Waters The NIOSH Lifting Equation - Part I. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 961-962.	0.3	1
5	Comparisons of tibial accelerations when walking on a wood composite vs. a concrete mezzanine surface. Applied Ergonomics, 2013, 44, 824-827.	3.1	3
6	Shoulder Muscle Fatigue During Repetitive Tasks as Measured by Electromyography and Near-Infrared Spectroscopy. Human Factors, 2013, 55, 1077-1087.	3.5	48
7	Comparisons of Tibial Shock when walking on four different flooring surface materials used in distribution centers. Proceedings of the Human Factors and Ergonomics Society, 2013, 57, 962-966.	0.3	0
8	Biomechanical, psychosocial and individual risk factors predicting low back functional impairment among furniture distribution employees. Clinical Biomechanics, 2012, 27, 117-123.	1.2	20
9	Musculoskeletal disorder risk during automotive assembly: current vs. seated. Applied Ergonomics, 2012, 43, 671-678.	3.1	24
10	Shoulder Muscle Oxygenation during Repetitive Tasks. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 1039-1041.	0.3	2
11	Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks. Applied Ergonomics, 2011, 42, 699-709.	3.1	22
12	Neurologically Intact Survival in a Porcine Model of Cardiac Arrest: Manual Cardiopulmonary Resuscitation vs. LifeBelt Cardiopulmonary Resuscitation. Prehospital Emergency Care, 2010, 14, 324-328.	1.8	3
13	Does personality affect the risk of developing musculoskeletal discomfort?. Theoretical Issues in Ergonomics Science, 2006, 7, 149-167.	1.8	11
14	Measuring adjustability's benefits. Occupational Health & Safety, 2004, 73, 54-61, 84.	0.0	0
15	The Influence of Psychosocial Stress, Gender, and Personality on Mechanical Loading of the Lumbar Spine. Spine, 2000, 25, 3045-3054.	2.0	196
16	Measuring trunk motions in industry: variability due to task factors, individual differences, and the amount of data collected. Ergonomics, 2000, 43, 691-701.	2.1	43
17	A Study of the Relationship between Personality and Risk Factors for Musculoskeletal Disorders. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 5-52-5-55.	0.3	1
18	Validation of a Low-Back Disorder Risk Model in a Prospective Study of Ergonomic Interventions into Manual Materials Handling Jobs. Proceedings of the Human Factors and Ergonomics Society, 2000, 44, 5-5-5-8.	0.3	2

W GARY ALLREAD

#	Article	IF	CITATIONS
19	Prospective validation of a low-back disorder risk model and assessment of ergonomic interventions associated with manual materials handling tasks. Ergonomics, 2000, 43, 1866-1886.	2.1	123
20	Effects of box features on spine loading during warehouse order selecting. Ergonomics, 1999, 42, 980-996.	2.1	87
21	The Relationship between Occupational Musculoskeletal Discomfort and Workplace, Personal, and Trunk Kinematic Factors. Proceedings of the Human Factors and Ergonomics Society, 1998, 42, 896-900.	0.3	2
22	Spine loading and probability of low back disorder risk as a function of box location on a pallet. Human Factors and Ergonomics in Manufacturing, 1997, 7, 323-336.	2.7	28
23	Trunk kinematics of one-handed lifting, and the effects of asymmetry and load weight. Ergonomics, 1996, 39, 322-334.	2.1	56
24	The Effects of Box Weight, Size, and Handle Coupling on Spine Loading during Depalletizing Operations. Proceedings of the Human Factors and Ergonomics Society, 1996, 40, 646-650.	0.3	0
25	The Effects of Box Differences and Employee Job Experience on Trunk Kinematics & Low Back Injury Risk during Depalletizing Operations. Proceedings of the Human Factors and Ergonomics Society, 1996, 40, 651-655.	0.3	2
26	Biomechanical risk factors for occupationally related low back disorders. Ergonomics, 1995, 38, 377-410.	2.1	519
27	The Role of Dynamic Three-Dimensional Trunk Motion in Occupationally-Related Low Back Disorders. Spine, 1993, 18, 617-628.	2.0	681
28	Dynamics of Trunk Performance during One-Handed Lifting. Proceedings of the Human Factors and Ergonomics Society, 1993, 37, 659-663.	0.3	0
29	Industrial Quantification of Occupationally-Related Low Back Disorder Risk Factors. Proceedings of the Human Factors Society Annual Meeting, 1992, 36, 757-760.	0.1	2