
Karol Wolski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2071598/publications.pdf Version: 2024-02-01

KAROL WOLSKI

#	Article	IF	CITATIONS
1	Biopolymeric nano/microspheres for selective and reversible adsorption of coronaviruses. Materials Science and Engineering C, 2017, 76, 735-742.	7.3	51
2	Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose, 2017, 24, 285-293.	4.9	40
3	A facile route to electronically conductive polyelectrolyte brushes as platforms of molecular wires. Chemical Science, 2015, 6, 1754-1760.	7.4	37
4	Liquid dispersions of zeolite monolayers with high catalytic activity prepared by soft-chemical exfoliation. Science Advances, 2020, 6, eaay8163.	10.3	37
5	Riboflavin-induced metal-free ATRP of (meth)acrylates. European Polymer Journal, 2020, 140, 110055.	5.4	30
6	The grafting density and thickness of polythiophene-based brushes determine the orientation, conjugation length and stability of the grafted chains. Polymer Chemistry, 2017, 8, 6250-6262.	3.9	28
7	Tannic Acidâ€Inspired Starâ€Like Macromolecules via Temporally Controlled Multiâ€Step Potential Electrolysis. Macromolecular Chemistry and Physics, 2019, 220, 1900073.	2.2	26
8	Synthesis of high molecular weight poly(n-butyl acrylate) macromolecules via seATRP: From polymer stars to molecular bottlebrushes. European Polymer Journal, 2020, 126, 109566.	5.4	25
9	Modified bionanocellulose for bioactive wound-healing dressing. European Polymer Journal, 2017, 96, 200-209.	5.4	23
10	Enhanced stability of conductive polyacetylene in ladder-like surface-grafted brushes. Polymer Chemistry, 2016, 7, 5664-5670.	3.9	20
11	Following principles of green chemistry: Low ppm photo-ATRP of DMAEMA in water/ethanol mixture. Polymer, 2021, 228, 123905.	3.8	20
12	Ordered photo- and electroactive thin polymer layers. European Polymer Journal, 2015, 65, 155-170.	5.4	19
13	Conductive polythiophene-based brushes grafted from an ITO surface via a self-templating approach. Polymer Chemistry, 2015, 6, 7505-7513.	3.9	19
14	Effect of functional groups on the thermal degradation of phosphorus- and phosphorus/nitrogen-containing functional polymers. Journal of Thermal Analysis and Calorimetry, 2017, 130, 799-812.	3.6	18
15	Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures. Journal of the American Chemical Society, 2021, 143, 11052-11062.	13.7	18
16	Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Progress in Polymer Science, 2021, 121, 101433.	24.7	16
17	Polymer Brushes via Surface-Initiated Electrochemically Mediated ATRP: Role of a Sacrificial Initiator in Polymerization of Acrylates on Silicon Substrates. Materials, 2020, 13, 3559.	2.9	15
18	Unraveling the nanomechanical properties of surface-grafted conjugated polymer brushes with ladder-like architecture. Polymer Chemistry, 2020, 11, 7050-7062.	3.9	14

KAROL WOLSKI

#	Article	IF	CITATIONS
19	Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr3 under Visible Light. Materials, 2020, 13, 5139.	2.9	13
20	Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers, 2020, 12, 888.	4.5	13
21	Hydrophobic modification of fir wood surface via low ppm ATRP strategy. Polymer, 2021, 228, 123942.	3.8	13
22	Anionic Polymer Brushes for Biomimetic Calcium Phosphate Mineralization—A Surface with Application Potential in Biomaterials. Polymers, 2018, 10, 1165.	4.5	12
23	Enhancement of the growth of polymer brushes via ATRP initiated from ions-releasing indium tin oxide substrates. European Polymer Journal, 2019, 112, 817-821.	5.4	12
24	Novel bioelectrodes based on polysaccharide modified gold surfaces and electrochemically active Lactobacillus rhamnosus GG biofilms. Electrochimica Acta, 2019, 296, 999-1008.	5.2	12
25	Double-stranded surface-grafted polymer brushes with ladder-like architecture. European Polymer Journal, 2021, 155, 110577.	5.4	12
26	Photoactive Surfaceâ€Grafted Polymer Brushes with Phthalocyanine Bridging Groups as an Advanced Architecture for Lightâ€Harvesting. Chemistry - A European Journal, 2017, 23, 11239-11243.	3.3	11
27	The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy, 2020, 10, 1656.	3.0	11
28	Pioglitazone-Loaded Nanostructured Hybrid Material for Skin Ulcer Treatment. Materials, 2020, 13, 2050.	2.9	11
29	Durable Polyelectrolyte Microcapsules with Near-Infrared-Triggered Loading and Nondestructive Release of Cargo. ACS Applied Materials & amp; Interfaces, 2021, 13, 1562-1572.	8.0	11
30	Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. Polymer, 2022, 255, 125098.	3.8	11
31	A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. Polymer, 2022, 242, 124587.	3.8	10
32	A New Protocol for Ash Wood Modification: Synthesis of Hydrophobic and Antibacterial Brushes from the Wood Surface. Molecules, 2022, 27, 890.	3.8	9
33	Tailored conditions for controlled and fast growth of surface-grafted PNIPAM brushes. Polymer, 2016, 97, 380-386.	3.8	8
34	Dexamethasone-containing bioactive dressing for possible application in post-operative keloid therapy. Cellulose, 2019, 26, 1895-1908.	4.9	8
35	Polymer brushes grafted from nanostructured zinc oxide layers – Spatially controlled decoration of nanorods. European Polymer Journal, 2019, 112, 186-194.	5.4	8
36	Dual-purpose surface functionalization of Ti-6Al-7Nb involving oxygen plasma treatment and Si-DLC or chitosan-based coatings. Materials Science and Engineering C, 2021, 121, 111848.	7.3	7

Karol Wolski

#	Article	IF	CITATIONS
37	Biostimulants and possibilities of their usage in grassland. Grassland Science, 2019, 65, 205-209.	1.1	6
38	Effects of a Plasma Water and Biostimulant on Lawn Functional Value. Agronomy, 2021, 11, 254.	3.0	6
39	TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses. Scientific World Journal, The, 2015, 2015, 1-11.	2.1	5
40	Fabrication of Functional Carbon/Magnetic Nanocomposites as A Promising Model of Utilization of Used Crosslinked Polymers. Materials, 2018, 11, 2595.	2.9	5
41	Comparison of the Yield and Chemical Composition of Eleven Timothy (Phleum pratense L.) Genotypes under Three Locations in Poland. Agronomy, 2020, 10, 1743.	3.0	5
42	Effect of Amino Acids and Effective Microorganisms on Meadow Silage Chemical Composition. Agronomy, 2021, 11, 1198.	3.0	5
43	Catalytic activity enhancement in pillared zeolites produced from exfoliated MWW monolayers in solution. Catalysis Today, 2022, 390-391, 272-280.	4.4	5
44	Growth of Lactic Acid Bacteria on Gold—Influence of Surface Roughness and Chemical Composition. Nanomaterials, 2020, 10, 2499.	4.1	4
45	Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures. Polymers, 2021, 13, 4458.	4.5	4
46	BONITATION ANALYSIS OF TURF ON CITY STADIUM IN WROCLAW IN THE SEASON OF EURO 2012. Journal of Ecological Engineering, 2016, 17, 311-320.	1.1	3
47	The influence of the grass mixture composition on the quality and suitability for football pitches. Scientific Reports, 2021, 11, 20592.	3.3	3
48	Topogami: Topologically Linked DNA Origami. ACS Nanoscience Au, 2022, 2, 57-63.	4.8	3
49	Color assessment of selected lawn grass mixtures. Grassland Science, 2021, 67, 198-206.	1.1	2
50	Effect of silicon foliar application on the functional value of lawns ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ. Journal of Element , .	ology, 201	.8 ₂
51	Effect of a Micronutrient Fertilizer and Fungicide on the Germination of Perennial Ryegrass Seeds (Lolium perenne L.) in Field Conditions. Agronomy, 2020, 10, 1978.	3.0	1
52	Chiral 3D DNA origami structures for ordered heterologous arrays. Nanoscale Advances, 2021, 3, 4685-4691.	4.6	1
53	Effect of Amino Acid and Titanium Foliar Application on Smooth-Stalked Meadow Grass (Poa pratensis) Tj ETQq1	1 0.7843 2.5	l4 ₁ rgBT /Ove
54	Assessment of Changes in Sod Under Intensive Use. Agricultural Engineering, 2017, 21, 5-15.	0.8	0