List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2071415/publications.pdf Version: 2024-02-01



IOHN CROTZINCER

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. Journal of Geophysical Research E: Planets, 2023, 128, .                                                                        | 1.5  | 27        |
| 2  | Ancient Winds, Waves, and Atmosphere in Gale Crater, Mars, Inferred From Sedimentary Structures<br>and Wave Modeling. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                             | 1.5  | 7         |
| 3  | Early impacts of climate change on a coastal marine microbial mat ecosystem. Science Advances, 2022, 8, .                                                                                                                                                  | 4.7  | 7         |
| 4  | Burial and Exhumation of Sedimentary Rocks Revealed by the Base Stimson Erosional Unconformity,<br>Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                             | 1.5  | 3         |
| 5  | The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic<br>Imaging Investigation. Space Science Reviews, 2021, 217, 24.                                                                                                  | 3.7  | 76        |
| 6  | A Rock Record of Complex Aeolian Bedforms in a Hesperian Desert Landscape: The Stimson Formation<br>as Exposed in the Murray Buttes, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2021,<br>126, e2020JE006554.                           | 1.5  | 34        |
| 7  | Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nature Reviews Earth & Environment, 2021, 2, 490-506.                                                                                                                          | 12.2 | 24        |
| 8  | Formation of Magnesium Carbonates on Earth and Implications for Mars. Journal of Geophysical<br>Research E: Planets, 2021, 126, e2021JE006828.                                                                                                             | 1.5  | 12        |
| 9  | Brine-driven destruction of clay minerals in Gale crater, Mars. Science, 2021, 373, 198-204.                                                                                                                                                               | 6.0  | 52        |
| 10 | A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars<br>Science Laboratory, Curiosity Rover. Minerals (Basel, Switzerland), 2021, 11, 847.                                                                      | 0.8  | 23        |
| 11 | The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.<br>Space Science Reviews, 2021, 217, 4.                                                                                                                    | 3.7  | 160       |
| 12 | Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars.<br>Science, 2021, 374, 711-717.                                                                                                                         | 6.0  | 86        |
| 13 | Extraformational sediment recycling on Mars. , 2020, 16, 1508-1537.                                                                                                                                                                                        |      | 20        |
| 14 | PIXL: Planetary Instrument for X-Ray Lithochemistry. Space Science Reviews, 2020, 216, 1.                                                                                                                                                                  | 3.7  | 58        |
| 15 | Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of<br><i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125,<br>e2020JE006527.                                    | 1.5  | 69        |
| 16 | Diagenesis of Vera Rubin Ridge, Gale Crater, Mars, From Mastcam Multispectral Images. Journal of<br>Geophysical Research E: Planets, 2020, 125, e2019JE006322.                                                                                             | 1.5  | 33        |
| 17 | Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006306.                                                                                                   | 1.5  | 86        |
| 18 | A Lacustrine Paleoenvironment Recorded at Vera RubinRidge, Gale Crater: Overview of the<br>Sedimentology and Stratigraphy Observed by the Mars ScienceLaboratory Curiosity Rover. Journal of<br>Geophysical Research E: Planets, 2020, 125, e2019JE006307. | 1.5  | 69        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evidence for Multiple Diagenetic Episodes in Ancient Fluvial‣acustrine Sedimentary Rocks in Gale<br>Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006295.                                           | 1.5 | 45        |
| 20 | The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale<br>Crater, Mars, as Observed by the ChemCam Instrument. Journal of Geophysical Research E: Planets,<br>2020, 125, e2019JE006320. | 1.5 | 41        |
| 21 | The origin of life as a planetary phenomenon. Science Advances, 2020, 6, eaax3419.                                                                                                                                                | 4.7 | 111       |
| 22 | Reevaluation of Perchlorate in Gale Crater Rocks Suggests Geologically Recent Perchlorate Addition.<br>Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006156.                                                      | 1.5 | 10        |
| 23 | Regional Structural Orientation of the Mount Sharp Group Revealed by In Situ Dip Measurements and<br>Stratigraphic Correlations on the Vera Rubin Ridge. Journal of Geophysical Research E: Planets, 2020,<br>125, e2019JE006298. | 1.5 | 26        |
| 24 | Diagenetic controls on the isotopic composition of carbonateâ€associated sulphate in the Permian<br>Capitan Reef Complex, West Texas. Sedimentology, 2019, 66, 2605-2626.                                                         | 1.6 | 26        |
| 25 | Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation,<br>Gale crater, Mars. Sedimentology, 2019, 66, 1768-1802.                                                                         | 1.6 | 80        |
| 26 | The Sedimentary Cycle on Early Mars. Annual Review of Earth and Planetary Sciences, 2019, 47, 91-118.                                                                                                                             | 4.6 | 59        |
| 27 | Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology, 2018, 65, 993-1042.                                          | 1.6 | 143       |
| 28 | A Field Guide to Finding Fossils on Mars. Journal of Geophysical Research E: Planets, 2018, 123, 1012-1040.                                                                                                                       | 1.5 | 86        |
| 29 | Shaler: <i>inÂsitu</i> analysis of a fluvial sedimentary deposit on Mars. Sedimentology, 2018, 65, 96-122.                                                                                                                        | 1.6 | 59        |
| 30 | Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 2018, 103, 1011-1020.                                                                                                                               | 0.9 | 96        |
| 31 | Sand Mineralogy Within the Bagnold Dunes, Gale Crater, as Observed In Situ and From Orbit.<br>Geophysical Research Letters, 2018, 45, 9488-9497.                                                                                  | 1.5 | 52        |
| 32 | Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances,<br>2018, 4, eaar3330.                                                                                                           | 4.7 | 150       |
| 33 | Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science, 2018, 360, 1096-1101.                                                                                                                     | 6.0 | 369       |
| 34 | Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale<br>crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 295-328.                                                 | 1.5 | 64        |
| 35 | Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units. Journal of Geophysical Research E: Planets, 2017, 122, 1090-1118.                                                                                      | 1.5 | 26        |
| 36 | Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical<br>Research Letters, 2017, 44, 4716-4724.                                                                                     | 1.5 | 87        |

JOHN GROTZINGER

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Redox stratification of an ancient lake in Gale crater, Mars. Science, 2017, 356, .                                                                                                                                                                                     | 6.0 | 209       |
| 38 | Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars.<br>Journal of Geophysical Research E: Planets, 2017, 122, 2-20.                                                                                                     | 1.5 | 60        |
| 39 | Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geoscience, 2017, 10,<br>658-662.                                                                                                                                                       | 5.4 | 53        |
| 40 | Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the<br>Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal<br>of Geophysical Research E: Planets, 2017, 122, 2574-2609. | 1.5 | 168       |
| 41 | Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical<br>Research Letters, 2016, 43, 7398-7407.                                                                                                                             | 1.5 | 110       |
| 42 | Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. Journal of Geophysical Research E: Planets, 2016, 121, 353-387.                                                                                  | 1.5 | 53        |
| 43 | Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin Xâ€ray<br>diffraction of the Windjana sample (Kimberley area, Gale Crater). Journal of Geophysical Research E:<br>Planets, 2016, 121, 75-106.                                   | 1.5 | 159       |
| 44 | The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets. Journal of Geophysical Research E: Planets, 2016, 121, 1713-1736.                                                                               | 1.5 | 123       |
| 45 | Silicic volcanism on Mars evidenced by tridymite in high-SiO <sub>2</sub> sedimentary rock at Gale crater. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7071-7076.                                                       | 3.3 | 158       |
| 46 | Large wind ripples on Mars: A record of atmospheric evolution. Science, 2016, 353, 55-58.                                                                                                                                                                               | 6.0 | 144       |
| 47 | Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. Journal of Geophysical Research E:<br>Planets, 2015, 120, 495-514.                                                                                                                                       | 1.5 | 375       |
| 48 | The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. American<br>Mineralogist, 2015, 100, 824-836.                                                                                                                                     | 0.9 | 122       |
| 49 | Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.                        | 3.3 | 172       |
| 50 | Reconstructing the transport history of pebbles on Mars. Nature Communications, 2015, 6, 8366.                                                                                                                                                                          | 5.8 | 59        |
| 51 | Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.                                                                                                                                                    | 6.0 | 471       |
| 52 | Dynamic changes in sulfate sulfur isotopes preceding the Ediacaran Shuram Excursion. Geochimica Et<br>Cosmochimica Acta, 2015, 170, 204-224.                                                                                                                            | 1.6 | 36        |
| 53 | The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science, 2015, 347, 412-414.                                                                                                                                                        | 6.0 | 113       |
| 54 | Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars.<br>Science, 2014, 343, 1245267.                                                                                                                                           | 6.0 | 323       |

4

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343,<br>1242777.                                                                                               | 6.0 | 687       |
| 56 | Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.                                                                                                                   | 6.0 | 508       |
| 57 | Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover.<br>Science, 2014, 343, 1244797.                                                                               | 6.0 | 475       |
| 58 | In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.                                                                                                               | 6.0 | 224       |
| 59 | Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343,<br>1244734.                                                                                             | 6.0 | 246       |
| 60 | Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars.<br>Journal of Geophysical Research E: Planets, 2014, 119, 1637-1664.                                        | 1.5 | 80        |
| 61 | Volumetric estimates of ancient water on Mount Sharp based on boxwork deposits, Gale Crater, Mars.<br>Journal of Geophysical Research E: Planets, 2014, 119, 189-198.                                          | 1.5 | 29        |
| 62 | Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond.<br>Journal of Geophysical Research E: Planets, 2014, 119, 1134-1161.                                          | 1.5 | 104       |
| 63 | Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale<br>crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1597-1613.                         | 1.5 | 50        |
| 64 | Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater,<br>Mars. Journal of Geophysical Research E: Planets, 2014, 119, 373-393.                                  | 1.5 | 65        |
| 65 | Chemistry of fractureâ€filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous<br>activity and habitability on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2398-2415. | 1.5 | 70        |
| 66 | The timing of alluvial activity in Gale crater, Mars. Geophysical Research Letters, 2014, 41, 1142-1149.                                                                                                       | 1.5 | 88        |
| 67 | A hematite-bearing layer in Gale Crater, Mars: Mapping and implications for past aqueous conditions.<br>Geology, 2013, 41, 1103-1106.                                                                          | 2.0 | 113       |
| 68 | X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater.<br>Science, 2013, 341, 1238932.                                                                                 | 6.0 | 327       |
| 69 | Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.                                                                                           | 6.0 | 367       |
| 70 | lsotope Ratios of H, C, and O in CO <sub>2</sub> and H <sub>2</sub> O of the Martian Atmosphere.<br>Science, 2013, 341, 260-263.                                                                               | 6.0 | 241       |
| 71 | Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.                                                                                                                                   | 6.0 | 326       |
| 72 | The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.                                                                                                                                | 6.0 | 134       |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the<br>Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research E: Planets, 2013, 118, 1955-1973. | 1.5 | 306       |
| 74 | Mars Science Laboratory Mission and Science Investigation. Space Science Reviews, 2012, 170, 5-56.                                                                                                        | 3.7 | 650       |
| 75 | The Sedimentary Rock Record of Mars: Distribution, Origins, and Global Stratigraphy. , 2012, , 1-48.                                                                                                      |     | 60        |
| 76 | Stratigraphic Architecture of Bedrock Reference Section, Victoria Crater, Meridiani Planum, Mars. , 2012, , 195-209.                                                                                      |     | 16        |
| 77 | Reconstruction of eolian bed forms and paleocurrents from cross-bedded strata at Victoria Crater,<br>Meridiani Planum, Mars. Journal of Geophysical Research, 2011, 116, .                                | 3.3 | 38        |
| 78 | Physicochemical properties of concentrated Martian surface waters. Journal of Geophysical Research, 2011, 116, .                                                                                          | 3.3 | 35        |
| 79 | Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophysical Research<br>Letters, 2010, 37, .                                                                                 | 1.5 | 368       |
| 80 | Sulfate-Rich Eolian and Wet Interdune Deposits, Erebus Crater, Meridiani Planum, Mars. Journal of<br>Sedimentary Research, 2009, 79, 247-264.                                                             | 0.8 | 57        |
| 81 | Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces:<br>Application to Meridiani Planum, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.      | 3.3 | 137       |
| 82 | Anomalous Carbonate Precipitates: Is the Precambrian the Key to the Permian?. Palaios, 1995, 10, 578.                                                                                                     | 0.6 | 380       |
| 83 | New Constraints on Precambrian Ocean Composition. Journal of Geology, 1993, 101, 235-243.                                                                                                                 | 0.7 | 369       |