Jose A Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2071051/publications.pdf Version: 2024-02-01

LOSE & MADTING

#	Article	IF	CITATIONS
1	An injectable, naproxen-conjugated, supramolecular hydrogel with ultra-low critical gelation concentration—prepared from a known folate receptor ligand. Soft Matter, 2022, 18, 3955-3966.	2.7	8
2	Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. International Journal of Molecular Sciences, 2021, 22, 2528.	4.1	13
3	Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Materials Science and Engineering C, 2021, 122, 111869.	7.3	21
4	Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel. Nanomaterials, 2021, 11, 704.	4.1	13
5	Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems. Gels, 2021, 7, 52.	4.5	7
6	Complexes of Bifunctional DO3A-N-(α-amino)propinate Ligands with Mg(II), Ca(II), Cu(II), Zn(II), and Lanthanide(III) Ions: Thermodynamic Stability, Formation and Dissociation Kinetics, and Solution Dynamic NMR Studies. Molecules, 2021, 26, 4956.	3.8	2
7	Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. Nanomaterials, 2021, 11, 16.	4.1	18
8	Initial Screening of Poly(ethylene glycol) Amino Ligands for Affinity Purification of Plasmid DNA in Aqueous Two-Phase Systems. Life, 2021, 11, 1138.	2.4	3
9	Dehydropeptide-based plasmonic magnetogels: a supramolecular composite nanosystem for multimodal cancer therapy. Journal of Materials Chemistry B, 2020, 8, 45-64.	5.8	27
10	Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels. Soft Matter, 2020, 16, 10001-10012.	2.7	12
11	Magnetoliposomes Incorporated in Peptide-Based Hydrogels: Towards Development of Magnetolipogels. Nanomaterials, 2020, 10, 1702.	4.1	10
12	Biological Evaluation of Naproxen–Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Pharmaceutics, 2020, 12, 122.	4.5	16
13	Synthesis and Characterisation of Dimeric Bolaamphiphilic Dehydrodipeptides for Biomedical Applications. Materials Proceedings, 2020, 4, .	0.2	Ο
14	Delivery of Linear Gene-Editing Systems by Cell-Penetrating Magnetite Vehicles: Synthesis, Characterization and Preliminary In Vitro Testing. Materials Proceedings, 2020, 4, .	0.2	0
15	Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers. Physical Chemistry Chemical Physics, 2019, 21, 10377-10390.	2.8	17
16	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	4.1	41
17	Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics, 2018, 10, 145.	4.5	28
18	Fluorescenceâ€Lifetime Imaging and Superâ€Resolution Microscopies Shed Light on the Directed―and Selfâ€Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces. Chemistry - A European Journal. 2017. 23. 9772-9789.	3.3	16

JOSE A MARTINS

#	Article	IF	CITATIONS
19	Self-assembled RGD dehydropeptide hydrogels for drug delivery applications. Journal of Materials Chemistry B, 2017, 5, 8607-8617.	5.8	35
20	Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells. Planta Medica, 2017, 83, 434-444.	1.3	23
21	Interactions between an Aryl Thioacetateâ€Functionalized Zn(II) Porphyrin and Graphene Oxide. Advanced Functional Materials, 2016, 26, 687-697.	14.9	17
22	Gold nanoparticles functionalised with fast water exchanging Gd ³⁺ chelates: linker effects on the relaxivity. Dalton Transactions, 2015, 44, 4016-4031.	3.3	19
23	Dextrin-Based Nanomagnetogel: In Vivo Biodistribution and Stability. Bioconjugate Chemistry, 2015, 26, 699-706.	3.6	9
24	New self-assembled supramolecular hydrogels based on dehydropeptides. Journal of Materials Chemistry B, 2015, 3, 6355-6367.	5.8	30
25	Dehydrodipeptide Hydrogelators Containing Naproxen N-Capped Tryptophan: Self-Assembly, Hydrogel Characterization, and Evaluation as Potential Drug Nanocarriers. Biomacromolecules, 2015, 16, 3562-3573.	5.4	38
26	Ga[NO2A-N-(α-amino)propionate] chelates: synthesis and evaluation as potential tracers for ⁶⁸ Ga PET. Dalton Transactions, 2014, 43, 8037-8047.	3.3	7
27	Ln[DO3A-N-α-(pyrenebutanamido)propionate] complexes: optimized relaxivity and NIR optical properties. Dalton Transactions, 2014, 43, 3162-3173.	3.3	14
28	Curcumin loaded MPEG-PCL di-block copolymer nanoparticles protect glioma cells from oxidative damage. Planta Medica, 2014, 80, .	1.3	2
29	New dextrin nanomagnetogels as contrast agents for magnetic resonance imaging. Journal of Materials Chemistry B, 2013, 1, 5853.	5.8	17
30	Amide conjugates of the DO3Aâ€ <i>N</i> â€(<i>α</i> â€amino)propionate ligand: leads for stable, high relaxivity contrast agents for MRI?. Contrast Media and Molecular Imaging, 2013, 8, 40-49.	0.8	9
31	NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. Reactive and Functional Polymers, 2013, 73, 1357-1365.	4.1	6
32	Influence of secretory leukocyte protease inhibitorâ€based peptides on elastase activity and their incorporation in hyaluronic acid hydrogels for chronic wound therapy. Biopolymers, 2012, 98, 576-590.	2.4	9
33	Gold nanoparticles functionalised with stable, fast water exchanging Gd3+ chelates as high relaxivity contrast agents for MRI. Dalton Transactions, 2012, 41, 5472.	3.3	58
34	Synthesis of 2,6â€Bis(oxazolyl)pyridine Ligands for Luminescent Ln ^{III} Complexes. European Journal of Organic Chemistry, 2012, 2012, 3905-3910.	2.4	4
35	Lysozyme and bovine serum albumin partitioning in polyethylene glycol–phenylalanine conjugate polymer/salt aqueous two-phase systems. Fluid Phase Equilibria, 2012, 322-323, 19-25.	2.5	13
36	Characterization of potential elastase inhibitor-peptides regulated by a molecular switch for wound dressings applications. Enzyme and Microbial Technology, 2012, 50, 107-114.	3.2	12

#	Article	IF	CITATIONS
37	Advances in the Synthesis of Homochiral (â^')-1-Azafagomine and (+)-5- <i>epi</i> -1-Azafagomine. 1- <i>N</i> -Phenyl Carboxamide Derivatives of both Enantiomers of 1-Azafagomine: Leads for the Synthesis of Active α-Glycosidase Inhibitors Journal of Organic Chemistry, 2011, 76, 9584-9592.	3.2	12
38	The interaction of La3+ complexes of DOTA/DTPA glycoconjugates with the RCA120 lectin: a saturation transfer difference NMR spectroscopic study. Journal of Biological Inorganic Chemistry, 2011, 16, 725-734.	2.6	5
39	Studies on the biodistribution of dextrin nanoparticles. Nanotechnology, 2010, 21, 295103.	2.6	9
40	Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging. Dalton Transactions, 2009, , 4656.	3.3	18
41	Gd(DO3A-N-α-aminopropionate): a versatile and easily available synthon with optimized water exchange for the synthesis of high relaxivity, targeted MRI contrast agents. Chemical Communications, 2009, , 6475.	4.1	37
42	Gd(III)‣PTPAC ₁₆ , a new selfâ€assembling potential liver MRI contrast agent: <i>in vitro</i> characterization and <i>in vivo</i> animal imaging studies. NMR in Biomedicine, 2008, 21, 322-336.	2.8	14
43	Self-Assembled Nanoparticles of Dextrin Substituted with Hexadecanethiol. Biomacromolecules, 2007, 8, 392-398.	5.4	61
44	Radiolabelled 153Sm-chelates of glycoconjugates: multivalence and topology effects on the targeting of the asialoglycoprotein receptor. Radiochimica Acta, 2007, 95, .	1.2	8
45	H ₅ EPTPACH ₂ OH: Synthesis, Relaxometric Characterization and ¹ H NMR Spectroscopic Studies on the Solution Dynamics of Its Ln ^{III} Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 5489-5499.	2.0	8
46	Supramolecular Assembly of an Amphiphilic GdIII Chelate: Tuning the Reorientational Correlation Time and the Water Exchange Rate. Chemistry - A European Journal, 2006, 12, 940-948.	3.3	56
47	Targeting of lanthanide(III) chelates of DOTA-type glycoconjugates to the hepatic asyaloglycoprotein receptor: cell internalization and animal imaging studies. Contrast Media and Molecular Imaging, 2006, 1, 246-258.	0.8	31
48	Lanthanide(III) Chelates of DTPA Bis(amide) Glycoconjugates: Potential Imaging Agents Targeted at the Asyaloglycoprotein Receptor. European Journal of Inorganic Chemistry, 2005, 2005, 2110-2119.	2.0	20
49	Lanthanide(III) Complexes of DOTA-Glycoconjugates: A Potential New Class of Lectin-Mediated Medical Imaging Agents. Chemistry - A European Journal, 2004, 10, 5804-5816.	3.3	88
50	Cn microspheres as surrogate membranes in glycosidase-catalysed hydrolysis of glycolipids. Chemical Communications, 2004, , 198.	4.1	0
51	Immobilisation on polystyrene of diazirine derivatives of mono- and disaccharides: biological activities of modified surfaces. Bioorganic and Medicinal Chemistry, 2001, 9, 2943-2953.	3.0	47

ToF-SIMS and XPS study of photoactivatable reagents designed for surface glycoengineering. Part III. 5-Carboxamidopentyl-N-[m-[3-(trifluoromethyl)diazirin-3-yl]phenyl-β-D-galactopyranosyl]-(1->4)-1-thio-β-D-glucopyranoside 15 (lactose aryl diazirine) on diam. Surface and Interface Analysis, 2001, 31, 457-464. 52