

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069757/publications.pdf Version: 2024-02-01

È:\È3/10/2 1+-

#	Article	IF	CITATIONS
1	Asymmetric Synthesis of <i>N</i> â€Substituted γâ€Amino Esters and γâ€Lactams Containing α,γâ€Stereogenic Centers via a Stereoselective Enzymatic Cascade. Advanced Synthesis and Catalysis, 2022, 364, 372-379.	4.3	10
2	Engineering a Carbonyl Reductase for Scalable Preparation of (<i>S</i>)â€3â€Cyclopentylâ€3â€hydroxypropanenitrile, the Key Building Block of Ruxolitinib. ChemBioChem, 2022, 23, .	2.6	1
3	Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. ChemSusChem, 2022, 15, .	6.8	24
4	A New 3-Ketosteroid-Δ1–Dehydrogenase with High Activity and Broad Substrate Scope for Efficient Transformation of Hydrocortisone at High Substrate Concentration. Microorganisms, 2022, 10, 508.	3.6	6
5	CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nature Communications, 2022, 13, 891.	12.8	39
6	Asymmetric Synthesis of <i>N</i> â€Substituted 1,2â€Amino Alcohols from Simple Aldehydes and Amines by Oneâ€Pot Sequential Enzymatic Hydroxymethylation and Asymmetric Reductive Amination. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
7	Stereocomplementary Synthesis of a Key Intermediate for Tofacitinib via Enzymatic Dynamic Kinetic Resolutionâ€Reductive Amination. Advanced Synthesis and Catalysis, 2022, 364, 2380-2386.	4.3	5
8	Inverting the Enantiopreference of Nitrilase atalyzed Desymmetric Hydrolysis of Prochiral Dinitriles by Reshaping the Binding Pocket with a Mirrorâ€Image Strategy. Angewandte Chemie, 2021, 133, 3723-3728.	2.0	1
9	Inverting the Enantiopreference of Nitrilaseâ€Catalyzed Desymmetric Hydrolysis of Prochiral Dinitriles by Reshaping the Binding Pocket with a Mirrorâ€Image Strategy. Angewandte Chemie - International Edition, 2021, 60, 3679-3684.	13.8	14
10	Crystal Structures and Catalytic Mechanism of l ―erythro â€3,5â€Diaminohexanoate Dehydrogenase and Rational Engineering for Asymmetric Synthesis of βâ€Amino Acids. Angewandte Chemie, 2021, 133, 10291-10298.	2.0	0
11	Crystal Structures and Catalytic Mechanism of <scp>l</scp> â€ <i>erythro</i> â€3,5â€Diaminohexanoate Dehydrogenase and Rational Engineering for Asymmetric Synthesis of βâ€Amino Acids. Angewandte Chemie - International Edition, 2021, 60, 10203-10210.	13.8	9
12	Improving Catalytic Activity and Reversing Enantioâ€Specificity of ωâ€Transaminase by Semiâ€Rational Engineering en Route to Chiral Bulky βâ€Amino Esters. ChemCatChem, 2021, 13, 3396-3400.	3.7	6
13	Synthesis of single stereoisomers of 2,2-disubstituted 3-hydroxycyclohexane-1-ones via enzymatic desymmetric reduction of the 1,3-cyclohexanediones. Green Synthesis and Catalysis, 2021, 2, 320-323.	6.8	12
14	Modulating the active site lid of an alcohol dehydrogenase from Ralstonia sp. enabled efficient stereospecific synthesis of 17β-hydroxysteroids. Enzyme and Microbial Technology, 2021, 149, 109837.	3.2	4
15	Biocatalytic Access to 1,4-Diazepanes via Imine Reductase-Catalyzed Intramolecular Asymmetric Reductive Amination. ACS Catalysis, 2020, 10, 8780-8787.	11.2	42
16	Highly Diastereoselective Synthesis of 2,2-Disubstituted Cyclopentane-1,3-diols via Stepwise Ketone Reduction Enabling Concise Chirality Construction. Journal of Organic Chemistry, 2020, 85, 9599-9606.	3.2	4
17	Engineering of l-threonine aldolase for the preparation of 4-(methylsulfonyl)phenylserine, an important intermediate for the synthesis of florfenicol and thiamphenicol. Enzyme and Microbial Technology, 2020, 137, 109551.	3.2	17
18	Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Communications Biology, 2020, 3, 217.	4.4	52

ȿ>Ⱦ‰ ņ⁻

#	Article	IF	CITATIONS
19	Structure-Guided Directed Evolution of a Carbonyl Reductase Enables the Stereoselective Synthesis of (2 <i>S</i> ,3 <i>S</i>)-2,2-Disubstituted-3-hydroxycyclopentanones via Desymmetric Reduction. Organic Letters, 2020, 22, 3444-3448.	4.6	19
20	Growth-coupled evolution of phosphoketolase to improve l-glutamate production by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2019, 103, 8413-8425.	3.6	14
21	Distinct Regioselectivity of Fungal P450 Enzymes for Steroidal Hydroxylation. Applied and Environmental Microbiology, 2019, 85, .	3.1	27
22	Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase. Nature Catalysis, 2019, 2, 931-941.	34.4	68
23	Efficient microbial synthesis of key steroidal intermediates from bio-renewable phytosterols by genetically modified <i>Mycobacterium fortuitum</i> strains. Green Chemistry, 2019, 21, 4076-4083.	9.0	11
24	Flavin Oxidoreductaseâ€Mediated Regeneration of Nicotinamide Adenine Dinucleotide with Dioxygen and Catalytic Amount of Flavin Mononucleotide for Oneâ€Pot Multiâ€Enzymatic Preparation of Ursodeoxycholic Acid. Advanced Synthesis and Catalysis, 2019, 361, 2497-2504.	4.3	20
25	Improving the catalytic efficiency and stereoselectivity of a nitrilase from <i>Synechocystis</i> sp. PCC6803 by semi-rational engineering en route to chiral γ-amino acids. Catalysis Science and Technology, 2019, 9, 1504-1510.	4.1	13
26	New product identification in the sterol metabolism by an industrial strain Mycobacterium neoaurum NRRL B-3805. Steroids, 2018, 132, 40-45.	1.8	16
27	Biocatalytic Route to Chiral 2-Substituted-1,2,3,4-Tetrahydroquinolines Using Cyclohexylamine Oxidase Muteins. ACS Catalysis, 2018, 8, 1648-1652.	11.2	28
28	Molecular Basis for the High Activity and Enantioselectivity of the Carbonyl Reductase from <i>Sporobolomyces salmonicolor</i> toward α-Haloacetophenones. ACS Catalysis, 2018, 8, 3525-3531.	11.2	23
29	Accessing <scp>d</scp> â€Valine Synthesis by Improved Variants of Bacterial Cyclohexylamine Oxidase. ChemCatChem, 2018, 10, 387-390.	3.7	7
30	A Fungal P450 Enzyme from Thanatephorus cucumeris with Steroid Hydroxylation Capabilities. Applied and Environmental Microbiology, 2018, 84, .	3.1	26
31	Characterization of new recombinant 3-ketosteroid-î"1-dehydrogenases for the biotransformation of steroids. Applied Microbiology and Biotechnology, 2017, 101, 6049-6060.	3.6	37
32	A new <scp>d</scp> -threonine aldolase as a promising biocatalyst for highly stereoselective preparation of chiral aromatic β-hydroxy-α-amino acids. Catalysis Science and Technology, 2017, 7, 5964-5973.	4.1	19
33	Efficient Biosynthesis of (<i>R</i>)â€or (<i>S</i>)â€2â€Hydroxybutyrate from <scp> </scp> â€Threonine through a Synthetic Biology Approach. Advanced Synthesis and Catalysis, 2016, 358, 2923-2928.	4.3	15
34	A sialic acid aldolase from Peptoclostridium difficile NAP08 with 4-hydroxy-2-oxo-pentanoate aldolase activity. Enzyme and Microbial Technology, 2016, 92, 99-106.	3.2	6
35	Effect of smokeless tobacco products on human oral bacteria growth and viability. Anaerobe, 2016, 42, 152-161.	2.1	21
36	New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates. Scientific Reports, 2016, 6, 24973.	3.3	15

ȿ>Ⱦ‰ ņ⁻

#	Article	IF	CITATIONS
37	An Unprecedented Effective Enzymatic Carboxylation of Phenols. ACS Catalysis, 2016, 6, 564-567.	11.2	42
38	Efficient Biosynthesis of Ethyl (R)-3-Hydroxyglutarate through a One-Pot Bienzymatic Cascade of Halohydrin Dehalogenase and Nitrilase. ChemCatChem, 2015, 7, 1389-1389.	3.7	1
39	Synthesis of α,β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction. Beilstein Journal of Organic Chemistry, 2015, 11, 2245-2251.	2.2	21
40	Highly Efficient Synthesis of Optically Pure (<i>S</i>)â€1â€phenylâ€1,2â€ethanediol by a Selfâ€Sufficient Whole Cell Biocatalyst. ChemistryOpen, 2015, 4, 483-488.	1.9	10
41	Exploring the synthetic applicability of a new carboxylic acid reductase from Segniliparus rotundus DSM 44985. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 1-7.	1.8	42
42	Efficient Biosynthesis of Ethyl (<i>R</i>)â€3â€Hydroxyglutarate through a Oneâ€Pot Bienzymatic Cascade of Halohydrin Dehalogenase and Nitrilase. ChemCatChem, 2015, 7, 1438-1444.	3.7	15
43	Semi–Rational Engineering a Carbonyl Reductase for the Enantioselective Reduction of β-Amino Ketones. ACS Catalysis, 2015, 5, 2452-2457.	11.2	46
44	Enzymatic Synthesis of a Key Intermediate for Rosuvastatin by Nitrilaseâ€Catalyzed Hydrolysis of Ethyl (<i>R</i>)â€4 yanoâ€3â€hydroxybutyate at High Substrate Concentration. ChemCatChem, 2015, 7, 271-275.	3.7	11
45	Biocatalytic desymmetrization of 3-substituted glutaronitriles by nitrilases. A convenient chemoenzymatic access to optically active (S)-Pregabalin and (R)-Baclofen. Science China Chemistry, 2014, 57, 1164-1171.	8.2	27