Michael H Herzog

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/206970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EEG microstates are a candidate endophenotype for schizophrenia. Nature Communications, 2020, 11, 3089.	12.8	134
2	Time Slices: What Is the Duration of a Percept?. PLoS Biology, 2016, 14, e1002433.	5.6	104
3	Effects of grouping in contextual modulation. Nature, 2002, 415, 433-436.	27.8	88
4	Long-lasting modulation of feature integrationby transcranial magnetic stimulation. Journal of Vision, 2009, 9, 1-1.	0.3	81
5	About individual differences in vision. Vision Research, 2017, 141, 282-292.	1.4	77
6	Human Perceptual Learning by Mental Imagery. Current Biology, 2009, 19, 2081-2085.	3.9	76
7	The flight path of the phoenix—The visible trace of invisible elements in human vision. Journal of Vision, 2006, 6, 7.	0.3	70
8	Neural correlates of visual crowding. NeuroImage, 2014, 93, 23-31.	4.2	67
9	Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: A candidate endophenotype of schizophrenia. Schizophrenia Research: Cognition, 2015, 2, 159-165.	1.3	64
10	Hard criteria for empirical theories of consciousness. Cognitive Neuroscience, 2021, 12, 41-62.	1.4	64
11	The unfolding argument: Why IIT and other causal structure theories cannot explain consciousness. Consciousness and Cognition, 2019, 72, 49-59.	1.5	63
12	Sex-related differences in vision are heterogeneous. Scientific Reports, 2018, 8, 7521.	3.3	60
13	All in Good Time: Long-Lasting Postdictive Effects Reveal Discrete Perception. Trends in Cognitive Sciences, 2020, 24, 826-837.	7.8	58
14	An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics. Clinical Neurophysiology, 2018, 129, 1427-1437.	1.5	53
15	Serial dependence does not originate from low-level visual processing. Cognition, 2021, 212, 104709.	2.2	50
16	An overview of quantitative approaches in Gestalt perception. Vision Research, 2016, 126, 3-8.	1.4	45
17	Neural dynamics of grouping and segmentation explain properties of visual crowding Psychological Review, 2017, 124, 483-504.	3.8	43
18	Is the perception of illusions abnormal in schizophrenia?. Psychiatry Research, 2018, 270, 929-939.	3.3	40

#	Article	IF	CITATIONS
19	Beyond Bouma's window: How to explain global aspects of crowding?. PLoS Computational Biology, 2019, 15, e1006580.	3.2	38
20	Is there a common factor for vision?. Journal of Vision, 2014, 14, 4-4.	0.3	36
21	Perceptual learning with spatial uncertainties. Vision Research, 2006, 46, 3223-3233.	1.4	35
22	Capsule networks as recurrent models of grouping and segmentation. PLoS Computational Biology, 2020, 16, e1008017.	3.2	33
23	Perceptual learning and roving: Stimulus types and overlapping neural populations. Vision Research, 2009, 49, 1420-1427.	1.4	32
24	A New Conceptualization of Human Visual Sensory-Memory. Frontiers in Psychology, 2016, 7, 830.	2.1	32
25	Perceptual learning, roving and the unsupervised bias. Vision Research, 2012, 61, 95-99.	1.4	28
26	Reverse feedback induces position and orientation specific changes. Vision Research, 2006, 46, 3761-3770.	1.4	27
27	Rethinking Body Ownership in Schizophrenia: Experimental and Meta-analytical Approaches Show no Evidence for Deficits. Schizophrenia Bulletin, 2018, 44, 643-652.	4.3	27
28	Factors underlying visual illusions are illusion-specific but not feature-specific. Journal of Vision, 2019, 19, 12.	0.3	26
29	What crowding can tell us about object representations. Journal of Vision, 2016, 16, 35.	0.3	25
30	Schizophrenia patients using atypical medication perform better in visual tasks than patients using typical medication. Psychiatry Research, 2019, 275, 31-38.	3.3	25
31	Spatial processing and visual backward masking. Advances in Cognitive Psychology, 2007, 3, 85-92.	0.5	25
32	Feature integration within discrete time windows. Nature Communications, 2019, 10, 4901.	12.8	22
33	Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making. PLoS Computational Biology, 2021, 17, e1009070.	3.2	18
34	Small effects of smoking on visual spatiotemporal processing. Scientific Reports, 2015, 4, 7316.	3.3	17
35	Putting low-level vision into global context: Why vision cannot be reduced to basic circuits. Vision Research, 2016, 126, 9-18.	1.4	17
36	Targets but not flankers are suppressed in crowding as revealed by EEG frequency tagging. NeuroImage, 2015, 119, 325-331.	4.2	16

#	Article	IF	CITATIONS
37	One-shot learning and behavioral eligibility traces in sequential decision making. ELife, 2019, 8, .	6.0	16
38	Consciousness & amp; the small network argument. Neural Networks, 2007, 20, 1054-1056.	5.9	15
39	The role of one-shot learning in #TheDress. Journal of Vision, 2017, 17, 15.	0.3	15
40	Neural Compensation Mechanisms of Siblings of Schizophrenia Patients as Revealed by High-Density EEG. Schizophrenia Bulletin, 2020, 46, 1009-1018.	4.3	15
41	Long-lasting visual integration of form, motion, and color as revealed by visual masking. Journal of Vision, 2013, 13, 12-12.	0.3	14
42	Visual masking & schizophrenia. Schizophrenia Research: Cognition, 2015, 2, 64-71.	1.3	14
43	Electrophysiological correlates of visual backward masking in high schizotypic personality traits participants. Psychiatry Research, 2017, 254, 251-257.	3.3	14
44	A computational model for reference-frame synthesis with applications to motion perception. Vision Research, 2016, 126, 242-253.	1.4	13
45	How best to unify crowding?. Current Biology, 2016, 26, R352-R353.	3.9	13
46	How color, regularity, and good Gestalt determine backward masking. Journal of Vision, 2014, 14, 8-8.	0.3	12
47	Crowding, grouping, and gain control in schizophrenia. Psychiatry Research, 2015, 226, 441-445.	3.3	12
48	Electrophysiological correlates of visual backward masking in patients with first episode psychosis. Psychiatry Research - Neuroimaging, 2018, 282, 64-72.	1.8	12
49	What to Choose Next? A Paradigm for Testing Human Sequential Decision Making. Frontiers in Psychology, 2017, 8, 312.	2.1	11
50	Dominant men are faster in decision-making situations and exhibit a distinct neural signal for promptness. Cerebral Cortex, 2018, 28, 3740-3751.	2.9	11
51	Running Large-Scale Simulations on the Neurorobotics Platform to Understand Vision – The Case of Visual Crowding. Frontiers in Neurorobotics, 2019, 13, 33.	2.8	11
52	Building perception block by block: a response to Fekete <i>et al.</i> . Neuroscience of Consciousness, 2019, 2019, niy012.	2.6	11
53	Individual differences in the perception of visual illusions are stable across eyes, time, and measurement methods. Journal of Vision, 2021, 21, 26.	0.3	11
54	Shrinking Bouma's window: How to model crowding in dense displays. PLoS Computational Biology, 2021, 17, e1009187.	3.2	11

#	Article	IF	CITATIONS
55	Tracing path-guided apparent motion in human primary visual cortex V1. Scientific Reports, 2014, 4, 6063.	3.3	10
56	Electrophysiological correlates of visual backward masking in patients with major depressive disorder. Psychiatry Research - Neuroimaging, 2019, 294, 111004.	1.8	10
57	A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities. Journal of Vision, 2021, 21, 17.	0.3	10
58	Global and high-level effects in crowding cannot be predicted by either high-dimensional pooling or target cueing. Journal of Vision, 2021, 21, 10.	0.3	10
59	Valences in contextual vision. Vision Research, 2004, 44, 3131-3143.	1.4	9
60	A guideline for linking brain wave findings to the various aspects of discrete perception. European Journal of Neuroscience, 2022, 55, 3528-3537.	2.6	9
61	The Fate of Visible Features of Invisible Elements. Frontiers in Psychology, 2012, 3, 119.	2.1	8
62	The effective reference frame in perceptual judgments of motion direction. Vision Research, 2015, 107, 101-112.	1.4	8
63	When illusions merge. Journal of Vision, 2020, 20, 12.	0.3	8
64	How stable is perception in #TheDress and #TheShoe?. Vision Research, 2020, 169, 1-5.	1.4	8
65	Dissecting (un)crowding. Journal of Vision, 2021, 21, 10.	0.3	8
66	When transcranial magnetic stimulation (TMS) modulates feature integration. European Journal of Neuroscience, 2010, 32, 1951-1958.	2.6	7
67	Does chronic nicotine consumption influence visual backward masking in schizophrenia and schizotypy?. Schizophrenia Research: Cognition, 2015, 2, 93-99.	1.3	7
68	Spatial properties of non-retinotopic reference frames in human vision. Vision Research, 2015, 113, 44-54.	1.4	7
69	What crowds in crowding?. Journal of Vision, 2016, 16, 25.	0.3	7
70	Perceptual learning is specific beyond vision and decision making. Journal of Vision, 2017, 17, 6.	0.3	7
71	Risk prediction error signaling: A two-component response?. NeuroImage, 2020, 214, 116766.	4.2	7
72	Long lasting effects of unmasking in a feature fusion paradigm. Psychological Research, 2007, 71, 653-658.	1.7	6

#	Article	IF	CITATIONS
73	Deleterious effects of roving on learned tasks. Vision Research, 2014, 99, 88-92.	1.4	6
74	Does sensitivity in binary choice tasks depend on response modality?. Consciousness and Cognition, 2016, 43, 57-65.	1.5	6
75	Local versus global and retinotopic versus non-retinotopic motion processing in schizophrenia patients. Psychiatry Research, 2016, 246, 461-465.	3.3	6
76	Unconscious retinotopic motion processing affects non-retinotopic motion perception. Consciousness and Cognition, 2018, 62, 135-147.	1.5	6
77	Exploring the Extent in the Visual Field of the Honeycomb and Extinction Illusions. I-Perception, 2019, 10, 204166951985478.	1.4	6
78	Motor response specificity in perceptual learning and its release by double training. Journal of Vision, 2019, 19, 4.	0.3	6
79	Pitting temporal against spatial integration in schizophrenic patients. Psychiatry Research, 2009, 168, 1-10.	3.3	5
80	What is new in perceptual learning?. Journal of Vision, 2017, 17, 23.	0.3	5
81	Electrophysiological correlates of visual backward masking in patients with bipolar disorder. Psychiatry Research - Neuroimaging, 2021, 307, 111206.	1.8	5
82	Unpredictability does not hamper nonretinotopic motion perception. Journal of Vision, 2017, 17, 6.	0.3	4
83	Perceptual grouping. Current Biology, 2018, 28, R687-R688.	3.9	4
84	Dopaminergic modulation of motor network compensatory mechanisms in Parkinson's disease. Human Brain Mapping, 2019, 40, 4397-4416.	3.6	4
85	Reference-frames in vision: Contributions of attentional tracking to nonretinotopic perception in the Ternus-Pikler display. Journal of Vision, 2019, 19, 7.	0.3	4
86	How do visual skills relate to action video game performance?. Journal of Vision, 2021, 21, 10.	0.3	4
87	EEG Correlates of Relative Motion Encoding. Brain Topography, 2016, 29, 273-282.	1.8	3
88	Is lack of attention necessary for task-irrelevant perceptual learning?. Vision Research, 2018, 152, 118-125.	1.4	3
89	Associations between genetic variations and global motion perception. Experimental Brain Research, 2019, 237, 2729-2734.	1.5	3
90	Bayesian regression explains how human participants handle parameter uncertainty. PLoS Computational Biology, 2020, 16, e1007886.	3.2	3

#	Article	IF	CITATIONS
91	Unraveling brain interactions in vision: The example of crowding. NeuroImage, 2021, 240, 118390.	4.2	3
92	Features integrate along a motion trajectory when object integrity is preserved. Journal of Vision, 2021, 21, 4.	0.3	3
93	Embedded figures in schizophrenia: A main deficit but no specificity. Schizophrenia Research: Cognition, 2022, 28, 100227.	1.3	3
94	No Common Factor Underlying Decline of Visual Abilities in Mild Cognitive Impairment. Experimental Aging Research, 2023, 49, 183-200.	1.2	3
95	Perceptual grouping leads to objecthood effects in the Ebbinghaus illusion. Journal of Vision, 2020, 20, 11.	0.3	2
96	Non-retinotopic adaptive center-surround modulation in motion processing. Vision Research, 2020, 174, 10-21.	1.4	2
97	Response to commentaries on †hard criteria for empirical theories of consciousness'. Cognitive Neuroscience, 2021, 12, 99-101.	1.4	2
98	First-person experience cannot rescue causal structure theories from the unfolding argument. Consciousness and Cognition, 2022, 98, 103261.	1.5	2
99	The Irreducibility of Vision: Gestalt, Crowding and the Fundamentals of Vision. Vision (Switzerland), 2022, 6, 35.	1.2	2
100	Editorial. Vision Research, 2016, 126, 1-2.	1.4	1
101	Spatial and temporal aspects of visual backward masking in children and young adolescents. Attention, Perception, and Psychophysics, 2016, 78, 1137-1144.	1.3	1
102	Pathological completion in the intact visual field of hemianopia patients. Visual Cognition, 2017, 25, 169-183.	1.6	1
103	Sustained spatial attention can affect feature fusion. Journal of Vision, 2018, 18, 20.	0.3	1
104	Double training reduces motor response specificity. Journal of Vision, 2017, 17, 38.	0.3	1
105	What determines the temporal extent of unconscious feature integration?. Journal of Vision, 2021, 21, 2323.	0.3	0
106	Efficient ensemble summaries are inversely related to visual crowding. Journal of Vision, 2021, 21, 2093.	0.3	0
107	Unraveling brain interactions in vision: the example of crowding. Journal of Vision, 2021, 21, 2017.	0.3	0
108	How crowding challenges (feedforward) convolutional neural networks. Journal of Vision, 2021, 21, 2039.	0.3	0

#	Article	IF	CITATIONS
109	Adaptive Trade-off between Sensitivity and Spatial Resolution and its Implications for Motion Discrimination and Segregation. Journal of Vision, 2021, 21, 1853.	0.3	0
110	Adaptive mechanisms of visual motion discrimination, integration, and segregation. Vision Research, 2021, 188, 96-114.	1.4	0
111	Towards a Unifying Model of Crowding: Model Olympics. Journal of Vision, 2017, 17, 399.	0.3	0
112	Perceptual Grouping and Segmentation: Uncrowding. Journal of Vision, 2017, 17, 366.	0.3	0
113	Crowding asymmetries in a neural model of image segmentation. Journal of Vision, 2017, 17, 365.	0.3	0
114	The Structure of Visual Space. Journal of Vision, 2017, 17, 787.	0.3	0
115	The effect of overall stimulus configuration on crowding. Journal of Vision, 2017, 17, 370.	0.3	0
116	Un-crowding affects cortical activation in V1 differently from LOC. Journal of Vision, 2017, 17, 368.	0.3	0
117	Sustained spatial attention can affect feature fusion. Journal of Vision, 2018, 18, 1027.	0.3	0
118	Cholinergic dysfunction might affect backward masking performance: evidence from schizophrenia. Journal of Vision, 2018, 18, 968.	0.3	0
119	Competing unconscious reference-frames shape conscious motion perception. Journal of Vision, 2019, 19, 150c.	0.3	0
120	Adaptive center-surround mechanisms in non-retinotopic processes. Journal of Vision, 2019, 19, 295b.	0.3	0
121	Information Integration and Information Storage in Retinotopic and Non-Retinotopic Sensory Memory. Vision (Switzerland), 2021, 5, 61.	1.2	0
122	Capsule networks as recurrent models of grouping and segmentation. , 2020, 16, e1008017.		0
123	Capsule networks as recurrent models of grouping and segmentation. , 2020, 16, e1008017.		0
124	Capsule networks as recurrent models of grouping and segmentation. , 2020, 16, e1008017.		0
125	Capsule networks as recurrent models of grouping and segmentation. , 2020, 16, e1008017.		0
126	Bayesian regression explains how human participants handle parameter uncertainty. , 2020, 16, e1007886.		0

8

#	Article	IF	CITATIONS
127	Bayesian regression explains how human participants handle parameter uncertainty. , 2020, 16, e1007886.		0
128	Bayesian regression explains how human participants handle parameter uncertainty. , 2020, 16, e1007886.		0
129	Bayesian regression explains how human participants handle parameter uncertainty. , 2020, 16, e1007886.		0
130	Bayesian regression explains how human participants handle parameter uncertainty. , 2020, 16, e1007886.		0
131	Bayesian regression explains how human participants handle parameter uncertainty. , 2020, 16, e1007886.		0