Timm Schroeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069421/publications.pdf

Version: 2024-02-01

161 papers 12,485 citations

56 h-index 104 g-index

194 all docs 194 docs citations

194 times ranked 18496 citing authors

#	Article	IF	Citations
1	Asymmetric organelle inheritance predicts human blood stem cell fate. Blood, 2022, 139, 2011-2023.	1.4	32
2	Blood stem cell PU.1 upregulation is a consequence of differentiation without fast autoregulation. Journal of Experimental Medicine, 2022, 219, .	8.5	7
3	An <i>In Vivo</i> CRISPR Screen Identifies Stepwise Genetic Dependencies of Metastatic Progression. Cancer Research, 2022, 82, 681-694.	0.9	14
4	Heritable changes in division speed accompany the diversification of single T cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	13
5	NfκB signaling dynamics and their target genes differ between mouse blood cell types and induce distinct cell behavior. Blood, 2022, 140, 99-111.	1.4	12
6	Open-source personal pipetting robots with live-cell incubation and microscopy compatibility. Nature Communications, 2022, 13 , .	12.8	14
7	Combining single-cell tracking and omics improves blood stem cell fate regulator identification. Blood, 2022, 140, 1482-1495.	1.4	12
8	Symmetric and asymmetric activation of hematopoietic stem cells. Current Opinion in Hematology, 2021, 28, 262-268.	2.5	12
9	E-cadherin is regulated by GATA-2 and marks the early commitment of mouse hematopoietic progenitors to the basophil and mast cell fates. Science Immunology, 2021, 6, .	11.9	25
10	PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. Journal of Experimental Medicine, 2021, 218, .	8.5	49
11	GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
12	<i>JAK2</i> -V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood, 2021, 137, 2139-2151.	1.4	26
13	Cytokine combinations for human blood stem cell expansion induce cell-type– and cytokine-specific signaling dynamics. Blood, 2021, 138, 847-857.	1.4	21
14	Analyzing signaling activity and function in hematopoietic cells. Journal of Experimental Medicine, 2021, 218, .	8.5	5
15	Sulfation of Glycosaminoglycans Modulates the Cell Cycle of Embryonic Mouse Spinal Cord Neural Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 643060.	3.7	7
16	TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell, 2021, 28, 1838-1850.e10.	11,1	69
17	Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. Journal of Experimental Medicine, 2021, 218, .	8.5	14
18	Sphingosine-1-Phosphate Receptor 3 Potentiates Inflammatory Programs in Normal and Leukemia Stem Cells to Promote Differentiation. Blood Cancer Discovery, 2021, 2, 32-53.	5.0	35

#	Article	IF	CITATIONS
19	An Immunocompetent Microphysiological System to Simultaneously Investigate Effects of Anti-Tumor Natural Killer Cells on Tumor and Cardiac Microtissues. Frontiers in Immunology, 2021, 12, 781337.	4.8	12
20	Glutathione peroxidase 4 and vitamin E control reticulocyte maturation, stress erythropoiesis and iron homeostasis. Haematologica, 2020, 105, 937-950.	3.5	42
21	Pitfalls and requirements in quantifying asymmetric mitotic segregation. Annals of the New York Academy of Sciences, 2020, 1466, 73-82.	3.8	8
22	Hypoxia Triggers the Intravasation of Clustered Circulating Tumor Cells. Cell Reports, 2020, 32, 108105.	6.4	126
23	An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. Lab on A Chip, 2020, 20, 4246-4254.	6.0	12
24	A Novel GATA2 Protein Reporter Mouse Reveals Hematopoietic Progenitor Cell Types. Stem Cell Reports, 2020, 15, 326-339.	4.8	12
25	Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations. Blood, 2020, 136, 2296-2307.	1.4	63
26	Ubiquitous overexpression of CXCL12 confers radiation protection and enhances mobilization of hematopoietic stem and progenitor cells. Stem Cells, 2020, 38, 1159-1174.	3.2	14
27	Live-animal imaging of native haematopoietic stem and progenitor cells. Nature, 2020, 578, 278-283.	27.8	171
28	Background and Illumination Correction for Time-Lapse Microscopy Data with Correlated Foreground. Lecture Notes in Computer Science, 2020, , 174-183.	1.3	0
29	Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 258-272.e9.	11.1	60
30	Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature, 2019, 573, 426-429.	27.8	123
31	Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. IScience, 2019, 19, 504-513.	4.1	13
32	Inflammasome Regulates Hematopoiesis through Cleavage of the Master Erythroid Transcription Factor GATA1. Immunity, 2019, 51, 50-63.e5.	14.3	61
33	Asymmetric division events promote variability in cell cycle duration in animal cells and Escherichia coli. Nature Communications, 2019, 10, 1901.	12.8	6
34	Understanding cell fate control by continuous single-cell quantification. Blood, 2019, 133, 1406-1414.	1.4	22
35	A 3D Tissue-wide Digital Imaging Pipeline for Quantitation of Secreted Molecules Shows Absence of CXCL12 Gradients in Bone Marrow. Cell Stem Cell, 2019, 25, 846-854.e4.	11.1	26
36	Clustering of samples with a tree-shaped dependence structure, with an application to microscopic time lapse imaging. Bioinformatics, 2019, 35, 2291-2299.	4.1	12

#	Article	IF	Citations
37	OVOL1 Influences the Determination and Expansion of iPSC Reprogramming Intermediates. Stem Cell Reports, 2019, 12, 319-332.	4.8	12
38	Inflammatory signals directly instruct PU.1 in HSCs via TNF. Blood, 2019, 133, 816-819.	1.4	53
39	Activity-Independent Effects of CREB on Neuronal Survival and Differentiation during Mouse Cerebral Cortex Development. Cerebral Cortex, 2018, 28, 538-548.	2.9	45
40	Engineering Human Bone Marrow Proxies. Cell Stem Cell, 2018, 22, 298-301.	11.1	23
41	Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating. Blood, 2018, 131, 1425-1429.	1.4	26
42	Specific Phospholipids Regulate the Acquisition of Neuronal and Astroglial Identities in Post-Mitotic Cells. Scientific Reports, 2018, 8, 460.	3.3	9
43	Engineered humanized bone organs maintain human hematopoiesis in vivo. Experimental Hematology, 2018, 61, 45-51.e5.	0.4	17
44	On the statistical analysis of single cell lineage trees. Journal of Theoretical Biology, 2018, 439, 160-165.	1.7	15
45	Multicolor quantitative confocal imaging cytometry. Nature Methods, 2018, 15, 39-46.	19.0	86
46	Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS ONE, 2018, 13, e0198330.	2.5	28
47	Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 58-69.	4.8	25
48	Automated Microfluidic System for Dynamic Stimulation and Tracking of Single Cells. Analytical Chemistry, 2018, 90, 10695-10700.	6.5	29
49	Lineage marker synchrony in hematopoietic genealogies refutes the PU.1/GATA1 toggle switch paradigm. Nature Communications, 2018, 9, 2697.	12.8	24
50	Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood, 2018, 132, 791-803.	1.4	24
51	Cell tracking <i>in vitro</i> reveals that the extracellular matrix glycoprotein Tenascin-C modulates cell cycle length and differentiation in neural stem/progenitor cells of the developing mouse spinal cord. Biology Open, 2018, 7, .	1.2	13
52	In vitro biomimetic engineering of a human hematopoietic niche with functional properties. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5688-E5695.	7.1	99
53	Prospective identification of hematopoietic lineage choice by deep learning. Nature Methods, 2017, 14, 403-406.	19.0	160
54	CSF-1–induced Src signaling can instruct monocytic lineage choice. Blood, 2017, 129, 1691-1701.	1.4	21

#	Article	IF	Citations
55	Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell, 2017, 31, 549-562.e11.	16.8	89
56	fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics, 2017, 33, 2020-2028.	4.1	58
57	Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell, 2017, 169, 807-823.e19.	28.9	339
58	A BaSiC tool for background and shading correction of optical microscopy images. Nature Communications, 2017, 8, 14836.	12.8	213
59	Lineage Reprogramming of Astroglial Cells from Different Origins into Distinct Neuronal Subtypes. Stem Cell Reports, 2017, 9, 162-176.	4.8	55
60	Live Imaging of Primary Cerebral Cortex Cells Using a 2D Culture System. Journal of Visualized Experiments, 2017, , .	0.3	2
61	Challenges and emerging directions in single-cell analysis. Genome Biology, 2017, 18, 84.	8.8	258
62	Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell–mediated TNFα signaling. Science Translational Medicine, 2017, 9, .	12.4	23
63	Illuminating stem cell transcription factor dynamics: long-term single-cell imaging of fluorescent protein fusions. Current Opinion in Cell Biology, 2017, 49, 77-83.	5.4	10
64	Live Imaging Followed by Single Cell Tracking to Monitor Cell Biology and the Lineage Progression of Multiple Neural Populations. Journal of Visualized Experiments, 2017, , .	0.3	8
65	Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nature Biotechnology, 2017, 35, 1202-1210.	17.5	104
66	Software tools for single-cell tracking and quantification of cellular and molecular properties. Nature Biotechnology, 2016, 34, 703-706.	17. 5	162
67	Continuous single cell imaging reveals sequential steps of plasmacytoid dendritic cell development from common dendritic cell progenitors. Scientific Reports, 2016, 6, 37462.	3.3	20
68	Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nature Cell Biology, 2016, 18, 607-618.	10.3	519
69	Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood, 2016, 127, 139-148.	1.4	192
70	DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival. Stem Cells, 2016, 34, 699-710.	3.2	44
71	Analysis of Cell Lineage Trees by Exact Bayesian Inference Identifies Negative Autoregulation of Nanog in Mouse Embryonic Stem Cells. Cell Systems, 2016, 3, 480-490.e13.	6.2	30
72	Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification. Blood, 2016, 128, 1181-1192.	1.4	31

#	Article	IF	Citations
73	Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature, 2016, 535, 299-302.	27.8	180
74	Challenges in long-term imaging and quantification of single-cell dynamics. Nature Biotechnology, 2016, 34, 1137-1144.	17.5	178
75	A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nature Communications, 2016, 7, 11903.	12.8	53
76	Nanog dynamics in single embryonic stem cells. Cell Cycle, 2016, 15, 770-771.	2.6	5
77	Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell, 2016, 18, 396-409.	11.1	307
78	Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids. Analytical Chemistry, 2016, 88, 1222-1229.	6.5	23
79	Factor graph analysis of live cell–imaging data reveals mechanisms of cell fate decisions. Bioinformatics, 2015, 31, 1816-1823.	4.1	22
80	STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling. Nature Communications, 2015, 6, 8928.	12.8	47
81	Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Research, 2015, 15, 542-553.	0.7	10
82	Marker-free detection of progenitor cell differentiation by analysis of Brownian motion in micro-wells. Integrative Biology (United Kingdom), 2015, 7, 178-183.	1.3	3
83	Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature, 2015, 520, 549-552.	27.8	498
84	Single-Stranded DNA-Binding Transcriptional Regulator FUBP1 Is Essential for Fetal and Adult Hematopoietic Stem Cell Self-Renewal. Cell Reports, 2015, 11, 1847-1855.	6.4	30
85	Network plasticity of pluripotency transcription factors in embryonic stem cells. Nature Cell Biology, 2015, 17, 1235-1246.	10.3	130
86	Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell, 2015, 17, 422-434.	11,1	353
87	Stem Cell-like Megakaryocyte Progenitors As Driving Forces of IFN-Induced Emergency Megakaryopooesis. Blood, 2015, 126, 2391-2391.	1.4	1
88	Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis. Frontiers in Cellular Neuroscience, 2014, 8, 77.	3.7	19
89	C/EBPÎ \pm Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors. PLoS Genetics, 2014, 10, e1004079.	3.5	85
90	Instruction of hematopoietic lineage choice by cytokine signaling. Experimental Cell Research, 2014, 329, 207-213.	2.6	37

#	Article	IF	Citations
91	Human Pancreatic Cancer-Associated Stellate Cells Remain Activated after in vivo Chemoradiation. Frontiers in Oncology, 2014, 4, 102.	2.8	29
92	Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms. Cell, 2014, 156, 343-358.	28.9	113
93	Quantitative Single-Cell Approaches to Stem Cell Research. Cell Stem Cell, 2014, 15, 546-558.	11.1	112
94	Single-cell technologies sharpen up mammalian stem cell research. Nature Cell Biology, 2014, 16, 919-927.	10.3	103
95	Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells. Stem Cell Reports, 2014, 3, 34-43.	4.8	40
96	Circulation-Independent Differentiation Pathway from Extraembryonic Mesoderm toward Hematopoietic Stem Cells via Hemogenic Angioblasts. Cell Reports, 2014, 8, 31-39.	6.4	46
97	Centroid Clustering of Cellular Lineage Trees. Lecture Notes in Computer Science, 2014, , 15-29.	1.3	3
98	Heterogeneity of sister cell fates. Nature Reviews Molecular Cell Biology, 2013, 14, 327-327.	37.0	7
99	An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinformatics, 2013, 14, 297.	2.6	117
100	Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nature Cell Biology, 2013, 15, 602-613.	10.3	211
101	Biallelic Expression of Nanog Protein in Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 13, 12-13.	11.1	86
102	Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nature Communications, 2013, 4, 2924.	12.8	158
103	Probing cellular processes by long-term live imaging – historic problems and current solutions. Journal of Cell Science, 2013, 126, 3805-15.	2.0	99
104	Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed–Sternberg cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20729-20734.	7.1	69
105	Time-lapse Imaging of Primary Preneoplastic Mammary Epithelial Cells Derived from Genetically Engineered Mouse Models of Breast Cancer. Journal of Visualized Experiments, 2013, , .	0.3	3
106	HSC-Explorer: A Curated Database for Hematopoietic Stem Cells. PLoS ONE, 2013, 8, e70348.	2.5	17
107	Prdm6 Is Essential for Cardiovascular Development In Vivo. PLoS ONE, 2013, 8, e81833.	2.5	15
108	Advances in tracking hematopoiesis at the single-cell level. Current Opinion in Hematology, 2012, 19, 243-249.	2.5	26

#	Article	IF	Citations
109	Stem cell powwow in Squaw Valley. Development (Cambridge), 2012, 139, 2457-2461.	2.5	O
110	Molecular live cell bioimaging in stem cell research. Annals of the New York Academy of Sciences, 2012, 1266, 18-27.	3.8	13
111	Hematopoiesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008250-a008250.	5.5	133
112	Multiâ€scale modeling of GMP differentiation based on singleâ€cell genealogies. FEBS Journal, 2012, 279, 3488-3500.	4.7	19
113	Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development (Cambridge), 2011, 138, 1057-1068.	2.5	139
114	Using an adherent cell culture of the mouse subependymal zone to study the behavior of adult neural stem cells on a single-cell level. Nature Protocols, 2011, 6, 1847-1859.	12.0	43
115	Towards a quantitative understanding of stem cell–niche interaction: Experiments, models, and technologies. Blood Cells, Molecules, and Diseases, 2011, 46, 308-317.	1.4	34
116	Wnt to Notch Relay Signaling Induces Definitive Hematopoiesis. Cell Stem Cell, 2011, 9, 2-4.	11.1	6
117	Long-term single-cell imaging of mammalian stem cells. Nature Methods, 2011, 8, S30-S35.	19.0	161
118	Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nature Protocols, 2011, 6, 214-228.	12.0	126
119	Functionally defined substates within the human embryonic stem cell compartment. Stem Cell Research, 2011, 7, 145-153.	0.7	17
120	Multi-type branching models to describe cell differentiation programs. Journal of Theoretical Biology, 2011, 277, 7-18.	1.7	32
121	Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming. Molecular Therapy, 2011, 19, 782-789.	8.2	224
122	The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Development (Cambridge), 2011, 138, 5067-5078.	2.5	94
123	Hierarchical Differentiation of Myeloid Progenitors Is Encoded in the Transcription Factor Network. PLoS ONE, 2011, 6, e22649.	2.5	137
124	Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
125	The role of Pax6 in regulating the orientation and mode of cell division of progenitors in the mouse cerebral cortex. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
126	The electronic crystal ball: predicting cell fate from time-lapse data. Nature Methods, 2010, 7, 190-191.	19.0	6

#	Article	IF	CITATIONS
127	Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons. PLoS Biology, 2010, 8, e1000373.	5.6	447
128	The Transcription Factor Pax6 Regulates Survival of Dopaminergic Olfactory Bulb Neurons via Crystallin αA. Neuron, 2010, 68, 682-694.	8.1	98
129	Hematopoietic Stem Cell Heterogeneity: Subtypes, Not Unpredictable Behavior. Cell Stem Cell, 2010, 6, 203-207.	11.1	94
130	Late Origin of Glia-Restricted Progenitors in the Developing Mouse Cerebral Cortex. Cerebral Cortex, 2009, 19, i135-i143.	2.9	70
131	Instruction of lineage choice by hematopoietic cytokines. Cell Cycle, 2009, 8, 4019-4020.	2.6	10
132	Hematopoietic Cytokines Can Instruct Lineage Choice. Science, 2009, 325, 217-218.	12.6	359
133	Analyzing cell fate control by cytokines through continuous single cell biochemistry. Journal of Cellular Biochemistry, 2009, 108, 343-352.	2.6	20
134	Improved prospective identification of megakaryocyte–erythrocyte progenitor cells. British Journal of Haematology, 2009, 144, 448-451.	2.5	15
135	Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature, 2009, 457, 896-900.	27.8	508
136	The transcription factors STAT5A/B regulate GM-CSF–mediated granulopoiesis. Blood, 2009, 114, 4721-4728.	1.4	58
137	Imaging stem-cell-driven regeneration in mammals. Nature, 2008, 453, 345-351.	27.8	182
138	Notch1 activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notch1 effects on myeloid and erythroid differentiation are independent of p53. Cell Death and Differentiation, 2008, 15, 398-407.	11.2	16
139	Notch Signaling in Embryonic and Adult Myelopoiesis. Cells Tissues Organs, 2008, 188, 91-102.	2.3	29
140	Exploring Hematopoiesis at Single Cell Resolution. Cells Tissues Organs, 2008, 188, 139-149.	2.3	25
141	Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development (Cambridge), 2008, 135, 11-22.	2.5	188
142	MAPK phosphataseâ€1 represents a novel antiâ€inflammatory target of glucocorticoids in the human endothelium. FASEB Journal, 2007, 21, 74-80.	0.5	81
143	Asymmetric Cell Division in Normal and Malignant Hematopoietic Precursor Cells. Cell Stem Cell, 2007, 1, 479-481.	11.1	31
144	Functional Properties of Neurons Derived from <i>In Vitro</i> Reprogrammed Postnatal Astroglia. Journal of Neuroscience, 2007, 27, 8654-8664.	3.6	344

#	Article	IF	Citations
145	mNotch1 signaling and erythropoietin cooperate in erythroid differentiation of multipotent progenitor cells and upregulate \hat{l}^2 -globin. Experimental Hematology, 2007, 35, 1321-1332.	0.4	13
146	Activated Notch1 alters differentiation of embryonic stem cells into mesodermal cell lineages at multiple stages of development. Mechanisms of Development, 2006, 123, 570-579.	1.7	83
147	The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nature Neuroscience, 2006, 9, 1099-1107.	14.8	350
148	Adrenomedullin/Cyclic AMP Pathway Induces Notch Activation and Differentiation of Arterial Endothelial Cells From Vascular Progenitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1977-1984.	2.4	118
149	Tracking Hematopoiesis at the Single Cell Level. Annals of the New York Academy of Sciences, 2005, 1044, 201-209.	3.8	37
150	Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biology, 2005, 6, 44.	3.0	193
151	Cdc42 Is Not Essential for Filopodium Formation, Directed Migration, Cell Polarization, and Mitosis in Fibroblastoid Cells. Molecular Biology of the Cell, 2005, 16, 4473-4484.	2.1	143
152	Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization. BioTechniques, 2004, 36, 418-424.	1.8	28
153	Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Experimental Hematology, 2003, 31, 39-47.	0.4	42
154	Dendritic Cells under Influence of Mouse Cytomegalovirus Have a Physiologic Dual Role: to Initiate and to Restrict T Cell Activation. Journal of Infectious Diseases, 2003, 187, 988-999.	4.0	65
155	Recombination signal sequence-binding protein JÂ alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4018-4023.	7.1	113
156	Notch Signaling Induces Multilineage Myeloid Differentiation and Up-Regulates PU.1 Expression. Journal of Immunology, 2003, 170, 5538-5548.	0.8	105
157	Generation of functionally mature dendritic cells from the multipotential stem cell line FDCPâ€mix. British Journal of Haematology, 2000, 111, 890-897.	2.5	4
158	Notch signalling via RBP-J promotes myeloid differentiation. EMBO Journal, 2000, 19, 2558-2568.	7.8	112
159	Generation of functionally mature dendritic cells from the multipotential stem cell line FDCP-mix. British Journal of Haematology, 2000, 111, 890-897.	2.5	5
160	Heparan Sulfate Proteoglycan Expression Is Induced During Early Erythroid Differentiation of Multipotent Hematopoietic Stem Cells. Blood, 1999, 93, 2884-2897.	1.4	13
161	Continuous long-term detection of live cell surface markers by †in culture' antibody staining. Protocol Exchange, 0, , .	0.3	14