Seppo Vainio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069084/publications.pdf Version: 2024-02-01

SEDDO VAINIO

#	Article	IF	CITATIONS
1	Female development in mammals is regulated by Wnt-4 signalling. Nature, 1999, 397, 405-409.	27.8	1,115
2	Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature, 1994, 372, 679-683.	27.8	973
3	Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell, 1993, 75, 45-58.	28.9	833
4	<i>Wnt11</i> and <i>Ret/Gdnf</i> pathways cooperate in regulating ureteric branching during metanephric kidney development. Development (Cambridge), 2003, 130, 3175-3185.	2.5	415
5	Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development (Cambridge), 2005, 132, 3859-3871.	2.5	301
6	Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Developmental Dynamics, 2000, 219, 322-332.	1.8	236
7	Kidney morphogenesis: cellular and molecular regulation. Mechanisms of Development, 2000, 92, 31-45.	1.7	230
8	Wnt-4 Deficiency Alters Mouse Adrenal Cortex Function, Reducing Aldosterone Production. Endocrinology, 2002, 143, 4358-4365.	2.8	204
9	Coordinating early kidney development: lessons from gene targeting. Nature Reviews Genetics, 2002, 3, 533-543.	16.3	195
10	Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 2001, 31, 285-293.	2.9	182
11	Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development (Cambridge), 2007, 134, 2397-2405.	2.5	174
12	Cell surface proteoglycan expression correlates with epithelial-mesenchymal interaction during tooth morphogenesis. Developmental Biology, 1988, 129, 565-572.	2.0	161
13	Transplanted astrocytes internalize deposited βâ€amyloid peptides in a transgenic mouse model of Alzheimer's disease. Glia, 2008, 56, 154-163.	4.9	148
14	Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney. Developmental Biology, 1989, 134, 382-391.	2.0	143
15	Inductive Tissue Interactions, Cell Signaling, and the Control of Kidney Organogenesis. Cell, 1997, 90, 975-978.	28.9	126
16	Expression of Sprouty genes 1 , 2 and 4 during mouse organogenesis. Mechanisms of Development, 2001, 109, 367-370.	1.7	122
17	Expression of syndecan gene is induced early, is transient, and correlates with changes in mesenchymal cell proliferation during tooth organogenesis. Developmental Biology, 1991, 147, 322-333.	2.0	111
18	Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E602-10.	7.1	107

#	Article	IF	CITATIONS
19	HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and <i>Irx1/2</i> . Development (Cambridge), 2013, 140, 873-885.	2.5	101
20	Molecular mechanisms of cell and tissue interactions during early tooth development. , 1996, 245, 151-161.		98
21	Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial <i>Wnt11</i> , mesenchymal <i>Gdnf</i> and stromal <i>Fgf7</i> signalling during kidney development. Development (Cambridge), 2004, 131, 3345-3356.	2.5	97
22	Wntâ€6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis, 2002, 32, 259-268.	1.6	96
23	Induction of ureter branching as a response to Wntâ€2b signaling during early kidney organogenesis. Developmental Dynamics, 2001, 222, 26-39.	1.8	91
24	The Partial Female to Male Sex Reversal in Wnt-4-Deficient Females Involves Induced Expression of Testosterone Biosynthetic Genes and Testosterone Production, and Depends on Androgen Action. Endocrinology, 2005, 146, 4016-4023.	2.8	91
25	Progesterone and <scp>W</scp> nt4 control mammary stem cells via myoepithelial crosstalk. EMBO Journal, 2015, 34, 641-652.	7.8	90
26	PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nature Communications, 2016, 7, 12751.	12.8	86
27	Wnt4/5a signalling coordinates cell adhesion and entry into meiosis during presumptive ovarian follicle development. Human Molecular Genetics, 2010, 19, 1539-1550.	2.9	85
28	Transient expression of syndecan in mesenchymal cell aggregates of the embryonic kidney. Developmental Biology, 1992, 152, 221-232.	2.0	83
29	A mouse model for α-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Human Molecular Genetics, 2004, 13, 955-965.	2.9	81
30	Wnt signaling in kidney development and disease. Organogenesis, 2008, 4, 55-59.	1.2	81
31	The adrenal capsule is a signaling center controlling cell renewal and zonation through <i>Rspo3</i> . Genes and Development, 2016, 30, 1389-1394.	5.9	79
32	Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrology Dialysis Transplantation, 2011, 26, 3843-3851.	0.7	78
33	Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression. Cardiovascular Research, 2010, 85, 100-109.	3.8	74
34	Coordination of trigeminal axon navigation and patterning with tooth organ formation: epithelial-mesenchymal interactions, and epithelial Wnt4 and Tgfl̂21 regulate semaphorin 3a expression in the dental mesenchyme. Development (Cambridge), 2005, 132, 323-334.	2.5	73
35	Wnt Signaling in Renal Cell Carcinoma. Cancers, 2016, 8, 57.	3.7	70
36	Deficiency in crumbs homolog 2 (<i>Crb2</i>) affects gastrulation and results in embryonic lethality in mice. Developmental Dynamics, 2011, 240, 2646-2656.	1.8	69

#	Article	IF	CITATIONS
37	Coordination of kidney organogenesis by Wnt signaling. Pediatric Nephrology, 2014, 29, 737-744.	1.7	69
38	Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties. European Polymer Journal, 2016, 75, 116-124.	5.4	66
39	Skin equivalents: skin from reconstructions as models to study skin development and diseases. British Journal of Dermatology, 2015, 173, 391-403.	1.5	65
40	Lexical Access Routes to Nouns in a Morphologically Rich Language. Journal of Memory and Language, 1999, 40, 109-135.	2.1	64
41	Sequential induction of syndecan, tenascin and cell proliferation associated with mesenchymal cell condensation during early tooth development. Differentiation, 1992, 50, 97-105.	1.9	63
42	Mouse model of proximal tubule endocytic dysfunction. Nephrology Dialysis Transplantation, 2011, 26, 3446-3451.	0.7	62
43	The Signaling Protein Wnt4 Enhances Thymopoiesis and Expands Multipotent Hematopoietic Progenitors through β-Catenin-Independent Signaling. Immunity, 2008, 29, 57-67.	14.3	58
44	Molecular Genetic Studies of Wnt Signaling in the Mouse. Experimental Cell Research, 1999, 253, 336-348.	2.6	55
45	Wnt4 coordinates directional cell migration and extension of the Müllerian duct essential for ontogenesis of the female reproductive tract. Human Molecular Genetics, 2016, 25, 1059-1073.	2.9	55
46	ErbB4 Modulates Tubular Cell Polarity and Lumen Diameter during Kidney Development. Journal of the American Society of Nephrology: JASN, 2012, 23, 112-122.	6.1	54
47	Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSGS. Journal of the American Society of Nephrology: JASN, 2014, 25, 2459-2470.	6.1	52
48	Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. International Journal of Molecular Sciences, 2020, 21, 6859.	4.1	52
49	Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Developmental Biology, 2006, 293, 473-483.	2.0	51
50	Wntsand the female reproductive system. The Journal of Experimental Zoology, 2001, 290, 616-623.	1.4	50
51	Signaling during Kidney Development. Cells, 2015, 4, 112-132.	4.1	50
52	Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Developmental Biology, 2011, 353, 50-60.	2.0	48
53	CD146 + cells are essential for kidney vasculature development. Kidney International, 2016, 90, 311-324.	5.2	47
54	Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood, 2011, 118, 5163-5173.	1.4	46

#	Article	IF	CITATIONS
55	BMP7 Induces Uterine Receptivity and Blastocyst Attachment. Endocrinology, 2017, 158, 979-992.	2.8	46
56	Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Frontiers in Cell and Developmental Biology, 2015, 3, 65.	3.7	45
57	Mapping of the fate of cell lineages generated from cells that express the Wnt4 gene by time-lapse during kidney development. Differentiation, 2010, 79, 57-64.	1.9	44
58	Wnt4, a pleiotropic signal for controlling cell polarity, basement membrane integrity, and antimullerian hormone expression during oocyte maturation in the female follicle. FASEB Journal, 2014, 28, 1568-1581.	0.5	44
59	Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Acta Biomaterialia, 2018, 75, 346-357.	8.3	43
60	Functional Genetic Targeting of Embryonic Kidney Progenitor Cells Ex Vivo. Journal of the American Society of Nephrology: JASN, 2015, 26, 1126-1137.	6.1	39
61	Actin-Based Mechanism of Holospora obtusa Trafficking in Paramecium caudatum. Protist, 2009, 160, 205-219.	1.5	38
62	Crosstalk between Jagged1 and GDNF/Ret/GFRα1 signalling regulates ureteric budding and branching. Mechanisms of Development, 2005, 122, 765-780.	1.7	37
63	In vitro studies toward noninvasive glucose monitoring with optical coherence tomography. Applied Optics, 2006, 45, 2251.	2.1	37
64	WNT4 is expressed in human fetal and adult ovaries and its signaling contributes to ovarian cell survival. Molecular and Cellular Endocrinology, 2010, 317, 106-111.	3.2	37
65	HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development (Cambridge), 2017, 144, 4704-4719.	2.5	37
66	Exosomes as secondary inductive signals involved in kidney organogenesis. Journal of Extracellular Vesicles, 2018, 7, 1422675.	12.2	37
67	Coordinated induction of cell proliferation and syndecan expression in dental mesenchyme by epithelium: Evidence for diffusible signals. Developmental Dynamics, 1992, 194, 105-117.	1.8	35
68	Organ <i>In Vitro</i> Culture: What Have We Learned about Early Kidney Development?. Stem Cells International, 2015, 2015, 1-16.	2.5	35
69	The lysyl hydroxylase isoforms are widely expressed during mouse embryogenesis, but obtain tissue- and cell-specific patterns in the adult. Matrix Biology, 2006, 25, 475-483.	3.6	34
70	Generation of an allele to inactivate <i>Wnt4</i> gene function conditionally in the mouse. Genesis, 2009, 47, 782-788.	1.6	34
71	Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary. Experimental Cell Research, 2015, 332, 163-178.	2.6	34
72	A Secreted BMP Antagonist, Cer1, Fine Tunes the Spatial Organization of the Ureteric Bud Tree during Mouse Kidney Development. PLoS ONE, 2011, 6, e27676.	2.5	34

#	Article	IF	CITATIONS
73	ATGme: Open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinformatics, 2015, 16, 303.	2.6	33
74	Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions. International Journal of Developmental Biology, 2003, 47, 3-13.	0.6	33
75	Nephrogenesis regulated by Wnt signaling. Journal of Nephrology, 2003, 16, 279-85.	2.0	32
76	Wnt-11 signaling leads to down-regulation of the Wnt/β-catenin, JNK/AP-1 and NF-ΪB pathways and promotes viability in the CHO-K1 cells. Experimental Cell Research, 2008, 314, 2389-2399.	2.6	31
77	Transient and recurrent expression of the Egr-1 gene in epithelial and mesenchymal cells during tooth morphogenesis suggests involvement in tissue interactions and in determination of cell fate. Mechanisms of Development, 1992, 39, 41-50.	1.7	30
78	Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography. Journal of Biomedical Optics, 2008, 13, 021111.	2.6	30
79	Placenta Defects and Embryonic Lethality Resulting from Disruption of Mouse Hydroxysteroid (17-β) Dehydrogenase 2 Gene. Molecular Endocrinology, 2008, 22, 665-675.	3.7	27
80	Ontogeny of 17β-hydroxysteroid dehydrogenase type 2 mRNA expression in the developing mouse placenta and fetus. Molecular and Cellular Endocrinology, 1997, 134, 33-40.	3.2	26
81	Wnt5a Deficiency Leads to Anomalies in Ureteric Tree Development, Tubular Epithelial Cell Organization and Basement Membrane Integrity Pointing to a Role in Kidney Collecting Duct Patterning. PLoS ONE, 2016, 11, e0147171.	2.5	26
82	Genomic response to Wnt signalling is highly context-dependent — Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Experimental Cell Research, 2009, 315, 2690-2704.	2.6	25
83	WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis. Experimental Cell Research, 2012, 318, 1134-1145.	2.6	25
84	Renal blood flow and oxygenation drive nephron progenitor differentiation. American Journal of Physiology - Renal Physiology, 2014, 307, F337-F345.	2.7	25
85	Biodegradable Nanocarriers Resembling Extracellular Vesicles Deliver Genetic Material with the Highest Efficiency to Various Cell Types. Small, 2020, 16, e1904880.	10.0	25
86	Kidney Development: An Overview. Nephron Experimental Nephrology, 2014, 126, 40-44.	2.2	24
87	Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Scientific Reports, 2018, 8, 14133.	3.3	24
88	Expression of Wnt and TGF-Î ² pathway components and key adrenal transcription factors in adrenocortical tumors: Association to carcinoma aggressiveness. Pathology Research and Practice, 2013, 209, 503-509.	2.3	23
89	Plasmon-Resonant Gold Nanostars With Variable Size as Contrast Agents for Imaging Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 13-20.	2.9	23
90	Sprouty2 Is Involved in Male Sex Organogenesis by Controlling Fibroblast Growth Factor 9-Induced Mesonephric Cell Migration to the Developing Testis. Endocrinology, 2006, 147, 3777-3788.	2.8	22

#	Article	IF	CITATIONS
91	MicroRNAs in Extracellular Vesicles in Sweat Change in Response to Endurance Exercise. Frontiers in Physiology, 2020, 11, 676.	2.8	22
92	Optical properties of plasmon-resonant bare and silica-coated nanostars used for cell imaging. Journal of Biomedical Optics, 2015, 20, 076017.	2.6	21
93	Characterization of nucleic acids from extracellular vesicle-enriched human sweat. BMC Genomics, 2021, 22, 425.	2.8	21
94	Characterization and expression of the human WNT4; lack of associated germline mutations in high—to moderate—risk breast and ovarian cancer. Cancer Letters, 2004, 213, 83-90.	7.2	20
95	Syndecan and tenascin: Induction during early tooth morphogenesis and possible interactions. Cell Differentiation and Development, 1990, 32, 383-389.	0.4	19
96	The embryonic aorta-gonad-mesonephros region as a generator of haematopoietic stem cells. Apmis, 2005, 113, 804-812.	2.0	19
97	Titania nanofibers in gypsum composites: an antibacterial and cytotoxicology study. Journal of Materials Chemistry B, 2014, 2, 1307.	5.8	19
98	Deducing the stage of origin of Wilms' tumours from a developmental series of <i>Wt1</i> mutants. DMM Disease Models and Mechanisms, 2015, 8, 903-17.	2.4	19
99	3D bioprinting of the kidney—hype or hope?. AIMS Cell and Tissue Engineering, 2018, 2, 119-162.	0.4	19
100	Impairment of Wnt11 function leads to kidney tubular abnormalities and secondary glomerular cystogenesis. BMC Developmental Biology, 2016, 16, 30.	2.1	18
101	Embryonic Stem Cells Derived Kidney Organoids as Faithful Models to Target Programmed Nephrogenesis. Scientific Reports, 2018, 8, 16618.	3.3	18
102	Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated. Mechanisms of Development, 2002, 115, 139-141.	1.7	16
103	Novel fixed Z-dimension (FiZD) kidney primordia and an organoid culture system for time-lapse confocal imaging. Development (Cambridge), 2017, 144, 1113-1117.	2.5	16
104	Kidney development and perspectives for organ engineering. Cell and Tissue Research, 2017, 369, 171-183.	2.9	16
105	Erbb4 regulates the oocyte microenvironment during folliculogenesis. Human Molecular Genetics, 2020, 29, 2813-2830.	2.9	16
106	Molecular Communications in Viral Infections Research: Modeling, Experimental Data, and Future Directions. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2021, 7, 121-141.	2.1	16
107	Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Scientific Reports, 2021, 11, 19594.	3.3	16
108	Differential expression of mouse laminin γ2 and γ2* chain transcripts. Cell and Tissue Research, 2000, 300, 129-137.	2.9	14

#	Article	IF	CITATIONS
109	Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes. Journal of Colloid and Interface Science, 2019, 553, 71-82.	9.4	14
110	Impact of Nanocapsules on Red Blood Cells Interplay Jointly Assessed by Optical Tweezers and Microscopy. Micromachines, 2020, 11, 19.	2.9	14
111	Induced Repatterning of Type XVIII Collagen Associates with Ectopic Sonic Hedgehog and Lung Surfactant C Gene Expression and Changes in Epithelial Epigenesis in the Ureteric Bud. Journal of the American Society of Nephrology: JASN, 2003, 14, S3-S8.	6.1	13
112	Mouse Embryonic Stem Cell-Derived Ureteric Bud Progenitors Induce Nephrogenesis. Cells, 2020, 9, 329.	4.1	13
113	Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. International Journal of Molecular Sciences, 2021, 22, 3267.	4.1	13
114	Biomedical applications of multifunctional magnetoelectric nanoparticles. Materials Chemistry Frontiers, 2022, 6, 1368-1390.	5.9	13
115	Lumbo-sacral neural crest derivatives fate mapped with the aid of Wnt-1 promoter integrate but are not essential to kidney development. Differentiation, 2009, 77, 199-208.	1.9	12
116	Protection of Cystinotic Mice by Kidney-Specific Megalin Ablation Supports an Endocytosis-Based Mechanism for Nephropathic Cystinosis Progression. Journal of the American Society of Nephrology: JASN, 2019, 30, 2177-2190.	6.1	12
117	Optical Studies of Nanodiamond-Tissue Interaction: Skin Penetration and Localization. Materials, 2019, 12, 3762.	2.9	12
118	The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. Developmental Biology, 2019, 449, 1-13.	2.0	11
119	Murine Wnt-1 with an Internal c-myc Tag Recombinantly Produced in Escherichia coli Can Induce Intracellular Signaling of the Canonical Wnt Pathway in Eukaryotic Cells. Journal of Biological Chemistry, 2004, 279, 47520-47527.	3.4	10
120	Conditional tamoxifen Cre induced mutagenesis in the embryonic kidney in organ culture. Genesis, 2007, 45, 757-761.	1.6	9
121	ErbB4, a Receptor Tyrosine Kinase, Coordinates Organization of the Seminiferous Tubules in the Developing Testis. Molecular Endocrinology, 2014, 28, 1534-1546.	3.7	8
122	Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumourigenesis gene discovery model. DMM Disease Models and Mechanisms, 2017, 10, 1503-1515.	2.4	8
123	Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chemical Science, 2021, 12, 8311-8319.	7.4	8
124	Role of the extracellular matrix-located Mac-2 binding protein as an interactor of the Wnt proteins. Biochemical and Biophysical Research Communications, 2017, 491, 953-957.	2.1	7
125	Clustering and classification of virus sequence through music communication protocol and wavelet transform. Genomics, 2021, 113, 778-784.	2.9	7
126	Potential strategies to prevent encrustations on urinary stents and catheters – thinking outside the box: a European network of multidisciplinary research to improve urinary stents (ENIUS) initiative. Expert Review of Medical Devices, 2021, 18, 1-9.	2.8	7

#	Article	IF	CITATIONS
127	Molecular genetic analysis of Wnt signals in mouse development. Seminars in Developmental Biology, 1995, 6, 267-274.	1.3	6
128	Polyamines are involved in murine kidney development controlling expression of c-ret, E-cadherin, and Pax2/8 genes. Differentiation, 2005, 73, 303-312.	1.9	6
129	Improving signal detection in emission optical projection tomography via single source multi-exposure image fusion. Optics Express, 2013, 21, 16584.	3.4	6
130	Nephrogenesis in organoids to develop novel drugs and progenitor cell based therapies. European Journal of Pharmacology, 2016, 790, 3-11.	3.5	6
131	Detection of intra-family coronavirus genome sequences through graphical representation and artificial neural network. Expert Systems With Applications, 2022, 194, 116559.	7.6	6
132	Plasmon-resonant gold nanoparticles with variable morphology as optical labels and drug carriers for cytological research. , 2013, , .		5
133	Optimization of Renal Organoid and Organotypic Culture for Vascularization, Extended Development, and Improved Microscopy Imaging. Journal of Visualized Experiments, 2020, , .	0.3	5
134	Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 2001, 31, 285-293.	2.9	5
135	The modulatory role of internet-supported mindfulness-based cognitive therapy on extracellular vesicles and psychological distress in people who have had cancer: a protocol for a two-armed randomized controlled study. Trials, 2022, 23, 118.	1.6	5
136	Interceullar adhesion and induction of epithelialization in the metanephric mesenchyme. Cell Differentiation and Development, 1988, 25, 111-117.	0.4	4
137	In Vitro Induction of Nephrogenesis in Mouse Metanephric Mesenchyme with Lithium Introduction and Ureteric Bud Recombination. Methods in Molecular Biology, 2012, 886, 23-30.	0.9	4
138	Deciphering the minimal quantity of mouse primary cells to undergo nephrogenesis ex vivo. Developmental Dynamics, 2021, , .	1.8	3
139	Computational modelling of nephron progenitor cell movement and aggregation during kidney organogenesis. Mathematical Biosciences, 2022, 344, 108759.	1.9	3
140	Molecular Changes in Dental Mesenchyme During Tooth Development. Frontiers of Oral Biology, 1991, 8, 42-56.	1.5	2
141	How the Developing Mammalian Kidney Assembles Its Thousands of Nephrons: Fgfs as Stemness Signals. Developmental Cell, 2012, 22, 1125-1126.	7.0	2
142	The effect of laser irradiation on living cells incubated with gold nanoparticles. , 2015, , .		2
143	The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis. Developmental Biology, 2017, 424, 28-39.	2.0	2
144	Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. Journal of Clinical Investigation, 2021, 131, .	8.2	2

#	Article	IF	CITATIONS
145	Production of monoclonal antibodies against murine dental papilla. European Journal of Oral Sciences, 1988, 96, 177-187.	1.5	1
146	Conditional expression of Lodavin, an avidinâ€ŧagged LDL receptor, for biotinâ€mediated applications in vivo. Genesis, 2012, 50, 693-699.	1.6	1
147	Reaction Time and Visual Memory in Connection to Alcohol Use in Persons with Bipolar Disorder. Brain Sciences, 2021, 11, 1154.	2.3	1
148	Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Development (Cambridge), 2015, 142, e1.2-e1.2.	2.5	1
149	Syndecan from embryonic tooth mesenchyme binds tenascin. Cell Differentiation and Development, 1989, 27, 80.	0.4	0
150	Haar wavelet based approach for Short Tandem Repeats(STR) Detection. , 2019, , .		0
151	Trisk 95 as a novel skin mirror for normal and diabetic systemic glucose level. Scientific Reports, 2020, 10, 12246.	3.3	0
152	Molecular Mediators and Models of Kidney Tubule Induction Trends in Glycoscience and Glycotechnology, 1998, 10, 335-347.	0.1	0
153	Reaction Time and Visual Memory in Connection to Hazardous Drinking Polygenic Scores in Schizoaffective Disorder and Bipolar Disorder. Brain Sciences, 2021, 11, 1422.	2.3	Ο