Ewelina A Knapska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2069010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ability to share emotions of others as a foundation of social learning. Neuroscience and Biobehavioral Reviews, 2022, 132, 23-36.	6.1	12
2	Targeted therapy of cognitive deficits in fragile X syndrome. Molecular Psychiatry, 2022, 27, 2766-2776.	7.9	4
3	Brain size, gut size and cognitive abilities: the energy trade-offs tested in artificial selection experiment. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212747.	2.6	4
4	Epileptiform GluN2B–driven excitation in hippocampus as a therapeutic target against temporal lobe epilepsy. Experimental Neurology, 2022, 354, 114087.	4.1	6
5	SRF depletion in early life contributes to social interaction deficits in the adulthood. Cellular and Molecular Life Sciences, 2022, 79, 278.	5.4	5
6	Emotional contagion and prosocial behavior in rodents. Trends in Cognitive Sciences, 2022, 26, 688-706.	7.8	37
7	Blueprints for measuring natural behavior. IScience, 2022, 25, 104635.	4.1	8
8	Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. British Journal of Pharmacology, 2021, 178, 672-688.	5.4	16
9	Distinct circuits in rat central amygdala for defensive behaviors evoked by socially signaled imminent versus remote danger. Current Biology, 2021, 31, 2347-2358.e6.	3.9	28
10	Relaying Aversive Ultrasonic Alarm Calls Depends on Previous Experience. Empathy, Social Buffering, or Panic?. Brain Sciences, 2021, 11, 759.	2.3	5
11	Ewelina Knapska. Current Biology, 2021, 31, R976-R977.	3.9	0
12	Hippocampal Inputs in the Prelimbic Cortex Curb Fear after Extinction. Journal of Neuroscience, 2021, 41, 9129-9140.	3.6	8
13	Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO Reports, 2020, 21, e48882.	4.5	63
14	Observational learning of fear in real time procedure. Scientific Reports, 2020, 10, 16960.	3.3	7
15	The neural and computational systems of social learning. Nature Reviews Neuroscience, 2020, 21, 197-212.	10.2	131
16	IntelliCage as a tool for measuring mouse behavior – 20 years perspective. Behavioural Brain Research, 2020, 388, 112620.	2.2	71
17	Social Transfer of Fear in Rodents. Current Protocols in Neuroscience, 2019, 90, e85.	2.6	7
18	Neuronal TDP-43 depletion affects activity-dependent plasticity. Neurobiology of Disease, 2019, 130, 104499.	4.4	15

EWELINA A KNAPSKA

#	Article	IF	CITATIONS
19	Ecological validity of social interaction tests in rats and mice. Genes, Brain and Behavior, 2019, 18, e12525.	2.2	82
20	What can rodents teach us about empathy?. Current Opinion in Psychology, 2018, 24, 15-20.	4.9	30
21	Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning. Cerebral Cortex, 2018, 28, 1645-1655.	2.9	29
22	Introduction–Empathy Beyond Semantics. , 2018, , 1-6.		0
23	Neuronal Correlates of Remote Fear Learning in Rats. , 2018, , 111-121.		0
24	Future Directions, Outstanding Questions. , 2018, , 191-196.		0
25	Development of automated cage for optogenetic experiments with electromagnetic positioning system. , 2018, , .		0
26	c-Fos and neuronal plasticity: the aftermath of Kaczmarek's theory. Acta Neurobiologiae Experimentalis, 2018, 78, 287-296.	0.7	11
27	The roots of empathy: Through the lens of rodent models. Neuroscience and Biobehavioral Reviews, 2017, 76, 216-234.	6.1	135
28	Why mother rats protect their children. ELife, 2017, 6, .	6.0	2
29	An automated cage for optogenetic experiments with electromagnetic positioning system. , 2017, , .		0
30	Sex differences in social modulation of learning in rats. Scientific Reports, 2016, 5, 18114.	3.3	54
31	Implementation of control system for optogenetic devices and home-cage environments. , 2016, , .		0
32	CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Molecular Biology of the Cell, 2016, 27, 4055-4066.	2.1	58
33	Matrix Metalloproteinase 9 (MMP-9) in Learning and Memory. , 2016, , 161-181.		4
34	Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism. ELife, 2016, 5, .	6.0	36
35	Miniature subcutaneous optogenetic device. , 2016, , .		0
36	Modular control system for optogenetic experiments. , 2016, , .		0

Ewelina A Knapska

#	Article	IF	CITATIONS
37	Neuronal correlates of asocial behavior in a BTBR T+ltpr3tf/J mouse model of autism. Frontiers in Behavioral Neuroscience, 2015, 9, 199.	2.0	34
38	Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Frontiers in Cellular Neuroscience, 2015, 9, 73.	3.7	49
39	A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Frontiers in Behavioral Neuroscience, 2014, 8, 140.	2.0	34
40	Neuroengineering control and regulation of behavior. , 2014, , .		0
41	IntelliCages and automated assessment of learning in group-housed mice. Proceedings of SPIE, 2014, , .	0.8	0
42	Controlling complexity: the clinical relevance of mouse complex genetics. European Journal of Human Genetics, 2013, 21, 1191-1196.	2.8	29
43	Social modulation in extinction of aversive memories. Behavioural Brain Research, 2013, 238, 200-205.	2.2	38
44	Reward Learning Requires Activity of Matrix Metalloproteinase-9 in the Central Amygdala. Journal of Neuroscience, 2013, 33, 14591-14600.	3.6	63
45	Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning. Journal of Biological Chemistry, 2013, 288, 20978-20991.	3.4	82
46	Functional anatomy of neural circuits regulating fear and extinction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17093-17098.	7.1	162
47	Cognitive Abilities of Alzheimers Disease Transgenic Mice are Modulated by Social Context and Circadian Rhythm. Current Alzheimer Research, 2011, 8, 883-892.	1.4	26
48	Hippocampal and Prefrontal Projections to the Basal Amygdala Mediate Contextual Regulation of Fear after Extinction. Journal of Neuroscience, 2011, 31, 17269-17277.	3.6	270
49	Social modulation of learning in rats. Learning and Memory, 2010, 17, 35-42.	1.3	141
50	Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learning and Memory, 2009, 16, 486-493.	1.3	224
51	New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learning and Memory, 2009, 16, 439-451.	1.3	112
52	Fear Extinction in Rodents. Current Protocols in Neuroscience, 2009, 47, Unit8.23.	2.6	46
53	Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction. Neurotoxicity Research, 2008, 13, 19-30.	2.7	51
54	Functional Internal Complexity of Amygdala: Focus on Gene Activity Mapping After Behavioral Training and Drugs of Abuse. Physiological Reviews, 2007, 87, 1113-1173.	28.8	131

EWELINA A KNAPSKA

#	Article	IF	CITATIONS
55	Differential involvement of the central amygdala in appetitive versus aversive learning. Learning and Memory, 2006, 13, 192-200.	1.3	110
56	c-Fos and Zif268 in Learning and Memory—Studies on Expression and Function. , 2006, , 137-158.		2
57	Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3858-3862.	7.1	144
58	A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK?. Progress in Neurobiology, 2004, 74, 183-211.	5.7	335
59	Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. NeuroReport, 2002, 13, 2241-2246.	1.2	49
60	Social deficits in <scp>BTBR</scp> T+ Itpr3tf/J mice vary with ecological validity of the test. Genes, Brain and Behavior, 0, , .	2.2	6