
Thomas R Hoye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2068505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TMS is Superior to Residual C <i>H</i> Cl ₃ for Use as the Internal Reference for Routine ¹ H NMR Spectra Recorded in CDCl ₃ . Journal of Organic Chemistry, 2022, 87, 905-909.	1.7	7
2	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	23.0	99
3	In Situ Allene Formation via Alkyne Tautomerization to Promote [4 + 2]-Cycloadditions with a Pendant Alkyne or Nitrile. Organic Letters, 2022, 24, 2327-2331.	2.4	3
4	Trapping Reactions of Benzynes Initiated by Intramolecular Nucleophilic Addition of a Carbonyl Oxygen to the Electrophilic Aryne. Organic Letters, 2022, 24, 425-429.	2.4	1
5	Hydrothermal catalysis of waste greases into green gasoline, jet, andÂdiesel biofuels in continuous flow supercritical water. Biofuels, Bioproducts and Biorefining, 2022, 16, 349-369.	1.9	7
6	Examples Showing the Utility of Doping Experiments in ¹ H NMR Analysis of Mixtures. Journal of Organic Chemistry, 2022, 87, 5660-5667.	1.7	3
7	Quaternary Ammonium Ion-Tethered (Ambient-Temperature) HDDA Reactions. Journal of the American Chemical Society, 2022, , .	6.6	3
8	Characterization of stereoisomeric 5â€(2â€nitroâ€1â€phenylethyl)furanâ€2(5 <i>H</i>)â€ones by computation o ¹ H and ¹³ C NMR chemical shifts and electronic circular dichroism spectra. Magnetic Resonance in Chemistry, 2021, 59, 43-51.	f 1.1	4
9	β-Methyl-δ-valerolactone-containing thermoplastic poly(ester-amide)s: synthesis, mechanical properties, and degradation behavior. Polymer Chemistry, 2021, 12, 1310-1316.	1.9	3
10	Hexadehydro-Diels–Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes. Chemical Reviews, 2021, 121, 2413-2444.	23.0	99
11	Coumarin (5,6-Benzo-2-pyrone) Trapping of an HDDA-Benzyne. Organic Letters, 2021, 23, 2189-2193.	2.4	4
12	Arylhydrazine Trapping of Benzynes: Mechanistic Insights and a Route to Azoarenes. Organic Letters, 2021, 23, 3432-3436.	2.4	4
13	"Kobayashi Benzynes―as Hexadehydro-Diels–Alder Diynophiles. Organic Letters, 2021, 23, 3349-3353.	2.4	6
14	Cu(I)-Catalyzed 1,2-Alkynyl-propargylation and -benzylation of Benzyne Derivatives. Organic Letters, 2021, 23, 5448-5451.	2.4	0
15	Sulfurane [S(IV)]-Mediated Fusion of Benzynes Leads to Helical Dibenzofurans. Journal of the American Chemical Society, 2021, 143, 13501-13506.	6.6	16
16	Synthesis of Isohexide Diyne Polymers and Hydrogenation to Their Saturated Polyethers. ACS Macro Letters, 2021, 10, 1068-1072.	2.3	6
17	Radial hexadehydro-Diels-Alder reactions. CheM, 2021, 7, 2527-2537.	5.8	3
18	<i>De novo</i> Assembly of the Benzenoid Ring as a Core Strategy for Synthesis of the Isoindolinone Natural Products Isohericerin, Erinacerin A, and Sterenin A. Organic Letters, 2021, 23, 7550-7554.	2.4	6

#	Article	IF	CITATIONS
19	Silicon as a powerful control element in HDDA chemistry: redirection of innate cyclization preferences, functionalizable tethers, and formal bimolecular HDDA reactions. Chemical Science, 2021, 12, 13902-13908.	3.7	1
20	Poly(4-ketovalerolactone) from Levulinic Acid: Synthesis and Hydrolytic Degradation. Macromolecules, 2020, 53, 4952-4959.	2.2	9
21	Reactions of HDDA Benzynes with <i>C,N</i> â€Ðiarylimines (ArCH=NAr'). European Journal of Organic Chemistry, 2020, 2020, 2379-2383.	1.2	3
22	Addendum: A guide to small-molecule structure assignment through computation of (¹H and ¹³C) NMR chemical shifts. Nature Protocols, 2020, 15, 2277-2277.	5.5	65
23	4-Carboalkoxylated Polyvalerolactones from Malic Acid: Tough and Degradable Polyesters. Macromolecules, 2020, 53, 3194-3201.	2.2	17
24	Reactions of thermally generated benzynes with six-membered <i>N</i> -heteroaromatics: pathway and product diversity. Chemical Science, 2019, 10, 9069-9076.	3.7	20
25	Hydrolytically-degradable homo- and copolymers of a strained exocyclic hemiacetal ester. Polymer Chemistry, 2019, 10, 4573-4583.	1.9	24
26	One-Pot, Three-Aryne Cascade Strategy for Naphthalene Formation from 1,3-Diynes and 1,2-Benzdiyne Equivalents. Journal of the American Chemical Society, 2019, 141, 9813-9818.	6.6	39
27	Superabsorbent Poly(isoprenecarboxylate) Hydrogels from Glucose. ACS Sustainable Chemistry and Engineering, 2019, 7, 7491-7495.	3.2	8
28	Benzyne Cascade Reactions via Benzoxetenonium lons and Their Rearrangements to <i>o</i> -Quinone Methides. Organic Letters, 2019, 21, 1672-1675.	2.4	11
29	Divergent Reactivity during the Trapping of Benzynes by Glycidol Analogs: Ring Cleavage via Pinacol-Like Rearrangements vs Oxirane Fragmentations. Organic Letters, 2019, 21, 2615-2619.	2.4	9
30	The Aza-hexadehydro-Diels–Alder Reaction. Journal of the American Chemical Society, 2019, 141, 19575-19580.	6.6	15
31	Poly(αâ€methyleneglutarimide)s from radical polymerization of αâ€methyleneglutarimides. Journal of Polymer Science Part A, 2018, 56, 1020-1027.	2.5	1
32	A Carbomethoxylated Polyvalerolactone from Malic Acid: Synthesis and Divergent Chemical Recycling. ACS Macro Letters, 2018, 7, 143-147.	2.3	63
33	Multiheterocyclic Motifs via Three-Component Reactions of Benzynes, Cyclic Amines, and Protic Nucleophiles. Organic Letters, 2018, 20, 100-103.	2.4	29
34	Intramolecular Capture of HDDA-Derived Benzynes: (i) 6- to 12-Membered Ring Formation, (ii) Internally (vis-Ã-vis Remotely) Tethered Traps, and (iii) Role of the Rate of Trapping by the Benzynophile. Organic Letters, 2018, 20, 88-91.	2.4	11
35	Cu ^I â€Mediated Bromoalkynylation and Hydroalkynylation Reactions of Unsymmetrical Benzynes: Complementary Modes of Addition. Angewandte Chemie, 2018, 130, 16802-16806.	1.6	4
36	Reactions of Diaziridines with Benzynes Give <i>N</i> -Arylhydrazones. Organic Letters, 2018, 20, 8082-8085.	2.4	14

#	Article	IF	CITATIONS
37	Cu ^I â€Mediated Bromoalkynylation and Hydroalkynylation Reactions of Unsymmetrical Benzynes: Complementary Modes of Addition. Angewandte Chemie - International Edition, 2018, 57, 16564-16568.	7.2	17
38	Sulfonamide-Trapping Reactions of Thermally Generated Benzynes. Organic Letters, 2018, 20, 7145-7148.	2.4	12
39	BF ₃ -Promoted, Carbene-like, C–H Insertion Reactions of Benzynes. Journal of the American Chemical Society, 2018, 140, 15616-15620.	6.6	31
40	lsomerization of Linear to Hyperbranched Polymers: Two Isomeric Lactones Converge via Metastable Isostructural Polyesters to a Highly Branched Analogue. ACS Macro Letters, 2018, 7, 1144-1148.	2.3	8
41	Atypical Mode of [3 + 2]-Cycloaddition: Pseudo-1,3-dipole Behavior in Reactions of Electron-Deficient Thioamides with Benzynes. Organic Letters, 2018, 20, 5550-5553.	2.4	19
42	Engineering the production of dipicolinic acid in E. coli. Metabolic Engineering, 2018, 48, 208-217.	3.6	30
43	Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters. Nature Communications, 2018, 9, 2880.	5.8	58
44	Isomerizations of Propargyl 3-Acylpropiolates via Reactive Allenes. Organic Letters, 2018, 20, 4425-4429.	2.4	6
45	The domino hexadehydro-Diels–Alder reaction transforms polyynes to benzynes to naphthynes to anthracynes to tetracynes (and beyond?). Nature Chemistry, 2018, 10, 838-844.	6.6	79
46	A Traceless Tether Strategy for Achieving Formal Intermolecular Hexadehydro-Diels–Alder Reactions. Organic Letters, 2018, 20, 5502-5505.	2.4	12
47	Fatty-acid derivative acts as a sea lamprey migratory pheromone. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8603-8608.	3.3	29
48	Benzocyclobutadienes: An Unusual Mode of Access Reveals Unusual Modes of Reactivity. Angewandte Chemie, 2018, 130, 10049-10053.	1.6	7
49	Benzocyclobutadienes: An Unusual Mode of Access Reveals Unusual Modes of Reactivity. Angewandte Chemie - International Edition, 2018, 57, 9901-9905.	7.2	30
50	Thermoplastic polyurethanes from β-methyl-δ-valerolactone-derived amidodiol chain extenders. Polymer, 2017, 111, 252-257.	1.8	10
51	Reactions of hexadehydro-Diels–Alder benzynes with structurally complex multifunctional natural products. Nature Chemistry, 2017, 9, 523-530.	6.6	100
52	Antiparasitic Sesquiterpenes from the Cameroonian Spice Scleria striatinux and Preliminary In Vitro and In Silico DMPK Assessment. Natural Products and Bioprospecting, 2017, 7, 235-247.	2.0	3
53	Photochemical Hexadehydro-Diels–Alder Reaction. Journal of the American Chemical Society, 2017, 139, 8400-8403.	6.6	47
54	Mechanistic Duality in Tertiary Amine Additions to Thermally Generated Hexadehydro-Diels–Alder Benzynes. Organic Letters, 2017, 19, 5705-5708.	2.4	15

#	Article	IF	CITATIONS
55	Trapping of Hexadehydro-Diels–Alder Benzynes with Exocyclic, Conjugated Enals as a Route to Fused Spirocyclic Benzopyran Motifs. Synlett, 2017, 28, 2933-2935.	1.0	7
56	Bile Salt-like Dienones Having a Novel Skeleton or a Rare Substitution Pattern Function as Chemical Cues in Adult Sea Lamprey. Organic Letters, 2017, 19, 4444-4447.	2.4	12
57	Molecular structure assignment simplified. Nature, 2017, 547, 410-411.	13.7	2
58	Isolation and Characterization of Sclerienone C from Scleria Striatinux. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	3
59	Reactions of Hexadehydro-Diels–Alder (HDDA)-Derived Benzynes with Thioamides: Synthesis of Dihydrobenzothiazino-Heterocyclics. Organic Letters, 2016, 18, 6312-6315.	2.4	27
60	Diels–Alder Reactions of Furans with Itaconic Anhydride: Overcoming Unfavorable Thermodynamics. Organic Letters, 2016, 18, 2584-2587.	2.4	34
61	The pentadehydro-Diels–Alder reaction. Nature, 2016, 532, 484-488.	13.7	49
62	Hexadehydro-Diels–Alder (HDDA)-Enabled Carbazolyne Chemistry: Single Step, de Novo Construction of the Pyranocarbazole Core of Alkaloids of the <i>Murraya koenigii</i> (Curry Tree) Family. Journal of the American Chemical Society, 2016, 138, 13870-13873.	6.6	100
63	Blue-Emitting Arylalkynyl Naphthalene Derivatives via a Hexadehydro-Diels–Alder Cascade Reaction. Journal of the American Chemical Society, 2016, 138, 12739-12742.	6.6	27
64	Poly(isoprenecarboxylates) from Glucose via Anhydromevalonolactone. ACS Macro Letters, 2016, 5, 1128-1131.	2.3	7
65	The Phenol–Ene Reaction: Biaryl Synthesis via Trapping Reactions between HDDA-Generated Benzynes and Phenolics. Organic Letters, 2016, 18, 5596-5599.	2.4	39
66	Reactions of HDDA-Derived Benzynes with Perylenes: Rapid Construction of Polycyclic Aromatic Compounds. Organic Letters, 2016, 18, 5636-5639.	2.4	27
67	The Hexadehydro-Diels–Alder Cycloisomerization Reaction Proceeds by a Stepwise Mechanism. Journal of the American Chemical Society, 2016, 138, 7832-7835.	6.6	58
68	Reactions of HDDA-Derived Benzynes with Sulfides: Mechanism, Modes, and Three-Component Reactions. Journal of the American Chemical Society, 2016, 138, 4318-4321.	6.6	89
69	iso-Petromyroxols: Novel Dihydroxylated Tetrahydrofuran Enantiomers from Sea Lamprey (Petromyzon marinus). Molecules, 2015, 20, 5215-5222.	1.7	8
70	Competition between classical and hexadehydro-Diels–Alder (HDDA) reactions of HDDA triynes with furan. Tetrahedron Letters, 2015, 56, 3265-3267.	0.7	17
71	Intramolecular [4 + 2] Trapping of a Hexadehydro-Diels–Alder (HDDA) Benzyne by Tethered Arenes. Organic Letters, 2015, 17, 856-859.	2.4	36
72	Diels–Alderase-free, bis-pericyclic, [4+2] dimerization in the biosynthesis of (±)-paracaseolide A. Nature Chemistry, 2015, 7, 641-645.	6.6	42

#	Article	IF	CITATIONS
73	Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy. Molecular Pharmaceutics, 2015, 12, 4329-4335.	2.3	30
74	Mechanism of the Intramolecular Hexadehydro-Diels–Alder Reaction. Journal of Organic Chemistry, 2015, 80, 11744-11754.	1.7	49
75	(+)- and (â^')-Petromyroxols: Antipodal Tetrahydrofurandiols from Larval Sea Lamprey (Petromyzon) Tj ETQq1 1	0.784314 2.4	rgBT/Overlov 25
76	Differential Scanning Calorimetry (DSC) as a Tool for Probing the Reactivity of Polyynes Relevant to Hexadehydro-Diels–Alder (HDDA) Cascades. Organic Letters, 2014, 16, 6370-6373.	2.4	20
77	A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nature Protocols, 2014, 9, 643-660.	5.5	334
78	The aromatic ene reaction. Nature Chemistry, 2014, 6, 34-40.	6.6	100
79	Tactics for probing aryne reactivity: mechanistic studies of silicon–oxygen bond cleavage during the trapping of (HDDA-generated) benzynes by silyl ethers. Chemical Science, 2014, 5, 545-550.	3.7	40
80	Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins. Journal of Biomolecular Screening, 2014, 19, 1201-1211.	2.6	24
81	Dichlorination of (Hexadehydro-Diels–Alder Generated) Benzynes and a Protocol for Interrogating the Kinetic Order of Bimolecular Aryne Trapping Reactions. Organic Letters, 2014, 16, 254-257.	2.4	43
82	Rates of Hexadehydro-Diels–Alder (HDDA) Cyclizations: Impact of the Linker Structure. Organic Letters, 2014, 16, 4578-4581.	2.4	51
83	Mechanism of the Reactions of Alcohols with <i>o</i> -Benzynes. Journal of the American Chemical Society, 2014, 136, 13657-13665.	6.6	61
84	Sustainable Thermoplastic Elastomers from Terpene-Derived Monomers. ACS Macro Letters, 2014, 3, 717-720.	2.3	152
85	Cycloaddition Reactions of Azide, Furan, and Pyrrole Units with Benzynes Generated by the Hexadehydro-Diels–Alder (HDDA) Reaction. Heterocycles, 2014, 88, 1191.	0.4	26
86	Flash Nanoprecipitation: Particle Structure and Stability. Molecular Pharmaceutics, 2013, 10, 4367-4377.	2.3	119
87	Alkane desaturation by concerted double hydrogen atom transfer to benzyne. Nature, 2013, 501, 531-534.	13.7	135
88	Synthesis of complex benzenoids via the intermediate generation of o-benzynes through the hexadehydro-Diels-Alder reaction. Nature Protocols, 2013, 8, 501-508.	5.5	55
89	Total synthesis of (±)-leuconolam: intramolecular allylic silane addition to a maleimide carbonyl group. Chemical Science, 2013, 4, 2262.	3.7	22
90	New Diarylheptanoids and a Hydroxylated Ottelione from Ottelia alismoides. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	1

#	Article	IF	CITATIONS
91	New diarylheptanoids and a hydroxylated ottelione from Ottelia alismoides. Natural Product Communications, 2013, 8, 351-8.	0.2	1
92	o-(Trialkylstannyl)anilines and their utility in Migita–Kosugi–Stille cross-coupling: direct introduction of the 2-aminophenyl substituent. Tetrahedron Letters, 2012, 53, 4938-4941.	0.7	20
93	The hexadehydro-Diels–Alder reaction. Nature, 2012, 490, 208-212.	13.7	376
94	Polyurethanes based on renewable polyols from bioderived lactones. Polymer Chemistry, 2012, 3, 2941.	1.9	41
95	A Strategy for Control of "Random―Copolymerization of Lactide and Glycolide: Application to Synthesis of PEG- <i>b</i> -PLGA Block Polymers Having Narrow Dispersity. Macromolecules, 2011, 44, 7132-7140.	2.2	109
96	Synthesis and olfactory activity of unnatural, sulfated 5β-bile acid derivatives in the sea lamprey (Petromyzon marinus). Steroids, 2011, 76, 291-300.	0.8	18
97	Allylmalonate as an Activator Subunit for the Initiation of Relay Ringâ€Closing Metathesis Reactions. Angewandte Chemie - International Edition, 2011, 50, 2141-2143.	7.2	14
98	Pheromones in Vertebrates. , 2010, , 225-262.		15
99	Total Synthesis of (â^)-Callipeltoside A. Journal of Organic Chemistry, 2010, 75, 7052-7060.	1.7	58
100	Room Temperature Acylketene Formation? 1,3-Dioxin-4-ones via Silver(I) Activation of Phenylthioacetoacetate in the Presence of Ketones. Journal of Organic Chemistry, 2010, 75, 6054-6056.	1.7	15
101	Long-Range Shielding Effects in the ¹ H NMR Spectra of Mosher-like Ester Derivatives. Organic Letters, 2010, 12, 1768-1771.	2.4	21
102	Dynamic Kinetic Resolution During a Vinylogous Payne Rearrangement: A Concise Synthesis of the Polar Pharmacophoric Subunit of (+)-Scyphostatin. Organic Letters, 2010, 12, 52-55.	2.4	25
103	Total Synthesis of Pelorusideâ€A through Kinetic Lactonization and Relay Ringâ€Closing Metathesis Cyclization Reactions. Angewandte Chemie - International Edition, 2010, 49, 6151-6155.	7.2	54
104	A Useful Modification of the Evans Magnesium Halide Catalyzed anti-Aldol Reaction: Application to Enolizable Aldehydes. Synlett, 2010, 2010, 1984-1986.	1.0	4
105	The Evolution of Chemistry through Synthesis (and of Synthesis in Chemistry). ACS Symposium Series, 2010, , 181-203.	0.5	3
106	Maleimide Functionalized Poly(<i>ε</i> â€caprolactone)â€ <i>block</i> â€poly(ethylene glycol) (PCLâ€PEGâ€MAL Synthesis, Nanoparticle Formation, and Thiol Conjugation. Macromolecular Chemistry and Physics, 2009, 210, 823-831.	.): 1.1	28
107	Dual Macrolactonization/Pyran–Hemiketal Formation via Acylketenes: Applications to the Synthesis of (â^')â€Callipeltosideâ€A and a Lyngbyalosideâ€B Model System. Angewandte Chemie - International Edition, 2008, 47, 9743-9746.	7.2	36
108	Diamino telechelic polybutadienes for solventless styrene–butadiene–styrene (SBS) triblock copolymer formation. Polymer, 2008, 49, 5307-5313.	1.8	22

#	Article	IF	CITATIONS
109	Preparation of Poly(ethylene glycol) Protected Nanoparticles with Variable Bioconjugate Ligand Density. Biomacromolecules, 2008, 9, 2705-2711.	2.6	104
110	Formation of Block Copolymer-Protected Nanoparticles via Reactive Impingement Mixing. Langmuir, 2007, 23, 10499-10504.	1.6	77
111	Details of the Structure Determination of the Sulfated Steroids PSDS and PADS:Â New Components of the Sea Lamprey (Petromyzonmarinus) Migratory Pheromone. Journal of Organic Chemistry, 2007, 72, 7544-7550.	1.7	41
112	Evaluation of various DFT protocols for computing1H and13C chemical shifts to distinguish stereoisomers: diastereomeric 2-, 3-, and 4-methylcyclohexanols as a test set. Journal of Physical Organic Chemistry, 2007, 20, 345-354.	0.9	26
113	Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nature Protocols, 2007, 2, 2451-2458.	5.5	655
114	Sequencing of Three-Component Olefin Metatheses:  Total Synthesis of Either (+)-Gigantecin or (+)-14-Deoxy-9-oxygigantecin. Organic Letters, 2006, 8, 3383-3386.	2.4	60
115	Student Empowerment through "Mini-microscale" Reactions: The Epoxidation of 1 mg of Geraniol. Journal of Chemical Education, 2006, 83, 919.	1.1	2
116	Silylative Dieckmann-Like Cyclizations of Ester-Imides (and Diesters). Organic Letters, 2006, 8, 5191-5194.	2.4	46
117	Comparative Dielsâ^'Alder Reactivities within a Family of Valence Bond Isomers:Â A Biomimetic Total Synthesis of (±)-UCS1025A. Journal of the American Chemical Society, 2006, 128, 2550-2551.	6.6	42
118	Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Applied Physics Letters, 2006, 88, 172102.	1.5	52
119	Hybrid Density Functional Methods Empirically Optimized for the Computation of 13C and 1H Chemical Shifts in Chloroform Solution. Journal of Chemical Theory and Computation, 2006, 2, 1085-1092.	2.3	151
120	Design of nonâ€peptidic helix/sheet topomimetics: applications to bacterial endotoxin neutralization and inhibition of angiogenesis and tumor growth in mice. FASEB Journal, 2006, 20, LB108.	0.2	0
121	Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nature Chemical Biology, 2005, 1, 324-328.	3.9	222
122	No-D NMR Study of the Pathway forn-BuLi "Oxidation―of 1,5-Cyclooctadiene to Dilithium Cyclooctatetraene Dianion [Li2COT2-]. Organic Letters, 2005, 7, 275-277.	2.4	7
123	Divergent Kinetic Control of Classical versus Ozonolytic Lactonization:Â Mechanism-Based Diastereoselection. Journal of the American Chemical Society, 2005, 127, 8256-8257.	6.6	17
124	Alkyne Haloallylation [with Pd(II)] as a Core Strategy for Macrocycle Synthesis:Â A Total Synthesis of (â^')-Haterumalide NA/(â^')-Oocydin A. Journal of the American Chemical Society, 2005, 127, 6950-6951.	6.6	72
125	Reaction Titration:  A Convenient Method for Titering Reactive Hydride Agents (Red-Al, LiAlH4, DIBALH,) Tj E	TQ _{q1} 10	.784314 rgB 24
126	Primary Amine (â [°] NH2) Quantification in Polymers:Â Functionality by19F NMR Spectroscopy.	2.2	29

Macromolecules, 2005, 38, 4679-4686.

Thomas R Hoye

#	Article	IF	CITATIONS
127	Coupling Reactions of End- vs Mid-Functional Polymers. Macromolecules, 2004, 37, 2563-2571.	2.2	68
128	No-D NMR (No-Deuterium Proton NMR) Spectroscopy:  A Simple Yet Powerful Method for Analyzing Reaction and Reagent Solutions. Organic Letters, 2004, 6, 953-956.	2.4	116
129	Relay Ring-Closing Metathesis (RRCM):Â A Strategy for Directing Metal Movement Throughout Olefin Metathesis Sequences. Journal of the American Chemical Society, 2004, 126, 10210-10211.	6.6	211
130	No-D NMR Spectroscopy as a Convenient Method for Titering Organolithium (RLi), RMgX, and LDA Solutions. Organic Letters, 2004, 6, 2567-2570.	2.4	63
131	Controlled Synthesis of High Molecular Weight Telechelic Polybutadienes by Ring-Opening Metathesis Polymerization. Macromolecules, 2004, 37, 5485-5489.	2.2	48
132	Macrolactonization via Ti(IV)-Mediated Epoxy-Acid Coupling:  A Total Synthesis of (â^')-Dactylolide [and Zampanolide]. Journal of the American Chemical Society, 2003, 125, 9576-9577.	6.6	100
133	Toward Computing Relative Configurations:  16-epi-Latrunculin B, a New Stereoisomer of the Actin Polymerization Inhibitor Latrunculin B. Journal of the American Chemical Society, 2002, 124, 7405-7410.	6.6	26
134	Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends. Journal of Polymer Science Part A, 2002, 40, 2310-2328.	2.5	105
135	Synthesis and application of fluorescently labeled phthalic anhydride (PA) functionalized polymers by ATRP. Polymer, 2002, 43, 5501-5509.	1.8	33
136	A Method for Easily Determining Coupling Constant Values: An Addendum to "A Practical Guide to First-Order Multiplet Analysis in1H NMR Spectroscopy― Journal of Organic Chemistry, 2002, 67, 4014-4016.	1.7	48
137	A USEFUL MODIFICATION OF THE KRAUS PROCEDURE[1] FOR PREPARATION OF ω-BROMO-1-ALKENES BY HMPA-PROMOTED ELIMINATION OF HBR FROM 1,I‰-DIBROMOALKANES. Synthetic Communications, 2001, 31, 1367-1371.	1.1	8
138	Synthesis ofend- andmid-Phthalic Anhydride Functional Polymers by Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 7941-7951.	2.2	28
139	SYNTHESIS AND X-RAY CRYSTALLOGRAPHY OF CHIRAL TROPOCORONANDS. Synthetic Communications, 2001, 31, 487-503.	1.1	2
140	Anionic synthesis and detection of fluorescence-labeled polymers with a terminal anhydride group. Journal of Polymer Science Part A, 2000, 38, 2177-2185.	2.5	18
141	Total Synthesis of (â^')-Cylindrocyclophane A via a Double Horner-Emmons Macrocyclic Dimerization Event. Journal of the American Chemical Society, 2000, 122, 4982-4983.	6.6	62
142	N-Methylputrescine Oxidation during Cocaine Biosynthesis:  Study of Prochiral Methylene Hydrogen Discrimination Using the Remote Isotope Method. Organic Letters, 2000, 2, 3-5.	2.4	21
143	Synthesis (and Alternative Proof of Configuration) of the Scyphostatin C(1â€~)â^'C(20â€~) Trienoyl Fragment. Organic Letters, 2000, 2, 1481-1483.	2.4	58
144	Silicon tethered ring-closing metathesis reactions for self- and cross-coupling of alkenols. Tetrahedron Letters, 1999, 40, 1429-1432.	0.7	88

#	Article	IF	CITATIONS
145	An Enyne Metathesis/(4 + 2)- Dimerization Route to (±)-Differolide. Organic Letters, 1999, 1, 277-280.	2.4	86
146	Total Synthesis of Michellamines Aâ^'C, Korupensamines Aâ^'D, and Ancistrobrevine B. Journal of Organic Chemistry, 1999, 64, 7184-7201.	1.7	64
147	Synthesis of a C(1)â^'C(14)-Containing Fragment of Callipeltoside A. Organic Letters, 1999, 1, 169-172.	2.4	59
148	Some Allylic Substituent Effects in Ring-Closing Metathesis Reactions:Â Allylic Alcohol Activation. Organic Letters, 1999, 1, 1123-1125.	2.4	190
149	A General, Practical, and Versatile Strategy for Accessing ω-Functional 1,2-Diols of High Enantiomeric Excess. Journal of Organic Chemistry, 1998, 63, 8554-8557.	1.7	22
150	Synthesis of Azulenone Skeletons by Reaction of 2-Phenyl-2-acylketenes [RCO(Ph)CCO] with Alkynyl Ethers:  Mechanistic Aspects and Further Transformations. Journal of Organic Chemistry, 1998, 63, 1630-1636.	1.7	23
151	An NMR Strategy for Determination of Configuration of Remote Stereogenic Centers:Â 3-Methylcarboxylic Acids. Journal of the American Chemical Society, 1998, 120, 4638-4643.	6.6	33
152	Practical Method for Chemoselective Formation of MTPA Amide Derivatives from Amino Alcohols and Phenols. Journal of Organic Chemistry, 1997, 62, 4168-4170.	1.7	6
153	A Convenient Synthesis of 1-Bromo- 4,5-dimethoxy-7-methylnaphthalene, a Naphthol Derivative Useful for Construction of Naphthylisoquinoline Alkaloids. Journal of Organic Chemistry, 1997, 62, 8586-8588.	1.7	29
154	Synthesis of theC2-Symmetric, Macrocyclic Alkaloid, (+)-Xestospongin A and Its C(9)-Epimer, (â^')-Xestospongin C:Â Impact of Substrate Rigidity and Reaction Conditions on the Efficiency of the Macrocyclic Dimerization Reaction. Journal of the American Chemical Society, 1996, 118, 12074-12081.	6.6	25
155	Highly Efficient Synthesis of the Potent Antitumor Annonaceous Acetogenin (+)-Parviflorin. Journal of the American Chemical Society, 1996, 118, 1801-1802.	6.6	107
156	Studies of Palladium-Catalyzed Cross-Coupling Reactions for Preparation of Highly Hindered Biaryls Relevant to the Korupensamine/Michellamine Problem. Journal of Organic Chemistry, 1996, 61, 7940-7942.	1.7	69
157	Applications of MTPA (Mosher) Amides of Secondary Amines:Â Assignment of Absolute Configuration in Chiral Cyclic Amines. Journal of Organic Chemistry, 1996, 61, 8489-8495.	1.7	45
158	MTPA (Mosher) Amides of Cyclic Secondary Amines:Â Conformational Aspects and a Useful Method for Assignment of Amine Configuration. Journal of Organic Chemistry, 1996, 61, 2056-2064.	1.7	64
159	Tandem GC/MS: A useful tool for studying end-capping reactions of oligo(styryl)lithium anions. Journal of Polymer Science Part A, 1995, 33, 1957-1967.	2.5	7
160	A Practical Guide to First-Order Multiplet Analysis in 1H NMR Spectroscopy. Journal of Organic Chemistry, 1994, 59, 4096-4103.	1.7	61
161	Kinetic lactonization of 4,6-dimethyl- and 2,4,6,8-tetramethyl-5-hydroxyazelaic acids: ground state conformational control. Journal of the American Chemical Society, 1984, 106, 2738-2739.	6.6	44
162	3,5-Hexadienoic Esters: A Convenient Preparation. Synthetic Communications, 1982, 12, 183-187.	1.1	15

#	Article	IF	CITATIONS
163	3,4,5-Trimethoxyphenyllithium. Synthetic Communications, 1982, 12, 49-52.	1.1	5
164	Diaziridines. II. Addition of diaziridines to electrophilic acetylenes. Journal of Organic Chemistry, 1973, 38, 2984-2988.	1.7	30
165	Synthesis and reactions of some 1-(nitroaryl)diaziridines. Journal of Organic Chemistry, 1972, 37, 2980-2983.	1.7	16